Гарантийный... Возврат Порядок

8 какие уровни организации организма вам известны. Системы органов в организме

Организм человека находится в постоянном взаимодействии с абиотическими и биотическими факторами окружающей среды, которая влияет на него и изменяет его. Происхождение человека интересует науку уже давно, и теории его происхождения различны. Это и то, что человек произошел из маленькой клетки, которая постепенно, образуя колонии клеток себе подобных, стала многоклеточной и в процессе длительного хода эволюции превратилась в человекоподобную обезьяну, и которая благодаря труду стала человеком.

Понятие уровней организации организма человека

В процессе обучения в общеобразовательной средней школе на уроках биологии изучение живого организма начинается с изучения растительной клетки и ее компонентов. Уже в старших классах на уроках школьникам задают вопрос: «Назовите уровни организации организма человека». Что это такое?

Под понятием "уровни организации организма человека" принято понимать его иерархическое строение от маленькой клетки до организменного уровня. Но этот уровень - не предел, и его завершает уже надорганизменный порядок, который включает в себя популяционно-видовой и биосферный уровни.

Выделяя уровни организации организма человека, следует подчеркнуть их иерархию:

  1. Молекулярно-генетический уровень.
  2. Клеточный уровень.
  3. Тканевый уровень.
  4. Органный уровень
  5. Организменный уровень.

Молекулярно-генетический уровень

Изучение молекулярных механизмов позволяет охарактеризовать его такими компонентами, как:

  • носители генетической информации - ДНК, РНК.
  • биополимеры, это белки, жиры и углеводы.

На этом уровне выделяют структурным элементом гены и их мутации, которые определяют изменчивость на организменном и клеточном уровне.

Молекулярно-генетический уровень организации организма человека представлен генетическим материалом, который закодирован в цепочке ДНК и РНК. Генетическая информация отражает такие важные составляющие организации жизни человека, как заболеваемость, обменные процессы, тип конституции, гендерную составляющую и индивидуальные признаки человека.

Молекулярный уровень организации организма человека представлен обменными процессами, которые состоят из ассимиляции и диссимиляции, регуляции обмена веществ, гликолиза, кроссинговера и митоза, мейоза.

Свойство и строение молекулы ДНК

Основными свойствами генов являются:

  • конвариантная редупликация;
  • способность к локальным структурным изменениям;
  • передача наследственной информации на внутриклеточном уровне.

Молекула ДНК состоит из пуриновых и пиримидиновых оснований, которые соединены по принципу водородных связей между собой и для их соединения и разрыва требуется ферментная ДНК-полимераза. Конвариантная редупликация происходит по матричному принципу, который обеспечивает их соединение по остатку азотистых оснований гуанина, аденина, цитозина и тимина. Этот процесс происходит за 100 секунд, и за это время успевает собраться 40 тыс. пар нуклеотидов.

Клеточный уровень организации

Изучение клеточного строения организма человека поможет понять и охарактеризовать клеточный уровень организации организма человека. Клетка является структурным компонентом и состоит из элементов периодической системы Д. И. Менделеева, из которых наиболее преобладающими являются водород, кислород, азот и углерод. Остальные элементы представлены группой макроэлементов и микроэлементов.

Структура клетки

Клетка открыта была Р. Гуком в XVII веке. Основными структурными элементами клетки являются цитоплазматическая мембрана, цитоплазма, органоиды клетки и ядро. Цитоплазматическая мембрана состоит из фосфолипидов и белков как структурных компонентов для обеспечения клетки порами и каналами для осуществления обмена веществ между клетками и поступления, выведения веществ из них.

Клеточное ядро

Ядро клетки состоит из ядерной оболочки, ядерного сока, хроматина и ядрышек. Ядерная оболочка выполняет формообразующую и транспортную функцию. Ядерный сок содержит белки, которые участвуют в синтезе нуклеиновых кислот.

  • хранение генетической информации;
  • воспроизведение и передача ;
  • регуляция деятельности клетки в ее жизнеобеспечивающих процессах.

Цитоплазма клетки

Цитоплазма состоит из органелл общего назначения и специализированных. Органеллы общего назначения разделяются на мембранные и немембранные.

Основной функцией цитоплазмы является постоянство внутренней среды.

Мембранные органеллы:

  • Эндоплазматическая сеть. Основными ее задачами является синтез биополимеров, внутриклеточный транспорт веществ, является депо ионов Ca+.
  • Аппарат Гольджи. Синтезирует полисахариды, гликопротеиды, участвуют в синтезе белка после выхода его из эндоплазматической сети, осуществляет транспорт и ферментацию секрета в клетке.
  • Пероксисомы и лизосомы. Переваривают поглощенные вещества и расщепляют макромолекулы, нейтрализуют токсические вещества.
  • Вакуоли. Хранение веществ, продуктов обмена.
  • Митохондрии. Энергетические и дыхательные процессы внутри клетки.

Немембранные органеллы:

  • Рибосомы. Синтезируют белки при участии РНК, которая переносит из ядра генетическую информацию о строении и синтезе белка.
  • Клеточный центр. Участвует в делении клеток.
  • Микротрубочки и микрофиламенты. Осуществляют поддерживающую функцию и сократительную.
  • Реснички.

Специализированные органеллы - это акросома сперматозоида, микроворсинки тонкой кишки, микротрубочки и микрореснички.

Теперь на вопрос: «Охарактеризуйте клеточный уровень организации организма человека», можно смело перечислить компоненты и их роль в организации строения клетки.

Тканевый уровень

В организме человека нельзя выделить уровень организации, в котором не присутствовала бы какая-либо ткань, состоящая из специализированных клеток. Ткани складываются из клеток и межклеточного вещества и по своей специализации их подразделяют на:


  • Нервная. Осуществляет интеграцию внешней и внутренней среды, регулирует процессы обмена веществ и высшую нервную деятельность.

Уровни организации организма человека переходят плавно друг в друга и образуют целостный орган или систему органов, которые выстилают множество тканей. Например, желудочно-кишечный тракт, который имеет трубчатое строение и состоит из серозного, мышечного и слизистого слоя. Кроме этого, он имеет питающие его кровеносные сосуды и нервно-мышечный аппарат, которым управляет нервная система, также множество ферментных и гуморальных систем управления.

Органный уровень

Все уровни организации организма человека, перечисленные ранее, являются компонентами органов. Органы выполняют специфические функции по обеспечению в организме постоянства внутренней среды, обмена веществ и образуют системы соподчиненных ей подсистем, которые выполняют определенную функцию организме. Например, дыхательная система состоит из легких, дыхательных путей, дыхательного центра.

Уровни организации организма человека как единое целое представляют собой интегрированную и полностью самообеспечивающуюся систему органов, образующую организм.

Организм как единое целое

Объединение систем и органов образуют организм, в котором осуществляется интеграция работы систем, обмен веществ, рост и размножение, пластичность, раздражимость.

Интеграция существует четырех видов: механическая, гуморальная, нервная и химическая.

Механическая интеграция осуществляется межклеточным веществом, соединительной тканью, вспомогательными органами. Гуморальная - кровь и лимфа. Нервная - это высший уровень интеграции. Химическая - гормонами эндокринных желез.

Уровни организации организма человека - это иерархическое усложнение в строении его организма. Организм как единое целое обладает телосложением - внешней интегрированной формой. Телосложение - это внешняя человека, которая имеет различные половые и возрастные особенности, строение и положение внутренних органов.

Различают астенические, нормостенические и гиперстенические типы строения телосложения, которые дифференцируются по росту, скелету, мускулатуре, наличию или отсутствию подкожного жира. Также в соответствии с типом телосложения системы органов имеют различное строение и положение, размеры и форму.

Понятие об онтогенезе

Индивидуальное развитие организма обусловлено не только генетическим материалом, но и внешними факторами окружающей среды. Уровни организации организма человека понятие об онтогенезе, или индивидуальном развитии организма в процессе своего развития, использует разные генетические материалы, участвующие в функционировании клетки в процессе развития ее. На работу генов влияет внешняя среда: через факторы окружающей среды происходит обновление, появление новых генетических программ, мутаций.

Например, гемоглобин изменяется трижды за все развитие человеческого организма. Белки, синтезирующие гемоглобин, проходят несколько стадий от эмбрионального гемоглобина, которые переходит в гемоглобин плода. В процессе созревания организма гемоглобин переходит в форму взрослого. Эти онтогенетические характеристики уровня развития организма человека кратко и понятно подчеркивают, что генетическая регуляция организма выполняет важную роль в процессе развития организма от клетки до систем и организма в целом.

Изучение организации позволяет ответить на вопрос: «Назовите уровни организации организма человека?». Организм человека регулируется не только нервно-гуморальными механизмами, но и генетическими, которые расположены в каждой клетке организма человека.

Уровни организации организма человека кратко можно описать как сложную соподчиненную систему, имеющую строение такое же по построению и усложнению, как и вся система живых организмов. Эта закономерность - эволюционно закрепленная особенность живых организмов.

Уровни организации

Человек - вершина эволюции животного мира. Все живые тела состоят из отдельных молекул , которые, в свою очередь, организуются в клетки , клетки - в ткани , ткани - в органы , органы - в системы органов . А они в совокупности образуют целостный организм .

На схеме показана взаимосвязь всех систем органов тела. Определяющим (детерминирующим) началом является генотип, а общими регулирующими системами - нервная и эндокринная. Уровни организации от молекулярного до системного характерны для всех органов. Организм в целом представляет собой единую взаимосвязанную систему.

Жизнь на Земле представлена индивидуумами определённого строения, принадлежащими к определённым систематическим группам, а также к сообществам разной сложности. Индивидуумы и сообщества организованы в пространстве и во времени. По подходу к их изучению можно выделить несколько основных уровней организации живой материи:

Молекулярный - любая живая система, как бы сложно была не организована, проявляется на уровне функционирования биологических макромолекул: нуклеиновых кислот, белков, полисахаридов и других органических. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ и превращение энергии, передача наследственной информации и др. Этот уровень изучает молекулярная биология.

Клеточный - клетка является структурно-функциональной и универсальной единицей живого организма. Биология клетки (наука цитология) изучает морфологическую организацию клетки, специализации клеток в ходе развития, функции клеточной мембраны, механизм и регуляции деления клетки;

Тканевый - совокупность клеток, объединённых общностью происхождения, сходством строения и выполнением общей функции.

Органный - структурно-функциональное объединение и взаимодействие нескольких типов тканей, образующих органы.

Организменный - целостная дифференцированная система органов, выполняющих различные функции и представляющих многоклеточный организм.

Популяционно-видовой - совокупность особей одного вида, объединённых общим местом обитания, создающим популяцию как систему надорганизменного порядка. В этой системе осуществляется простейшие элементарные эволюционные преобразования.

Биогеоценотический - совокупность организмов разных видов и различной сложности организации со всеми факторами среды обитания.

Биосферный - система высшего ранга, охватывающая все явления жизни на Земле. На этом уровне осуществляется круговорот веществ и превращение энергии, связанные с жизнедеятельностью живых организмов.

Уровни организации организма человека (на примере выполнения двигательной функции )
Уровень Структуры Функционирование
Молекулярный Белки: актин, миозин Высвобождение энергии, движение нитей актина относительно нитей миозина
Субклеточный Саркомеры и миофибриллы - структуры, сформированные несколькими белками Укорочение саркомеров и миофибрилл
Клеточный Мышечные волокна Укорочение мышечных волокон
Тканевой Поперечно-полосатая скелетная мышечная ткань Укорочение групп (пучков) мышечных волокон
Организменный Поперечно-полосатые скелетные мышцы Укорочение мышц
Системный Опорно-двигательная система Изменение положения костей (кожи в случае мимических мышц) относительно друг друга
Функциональная система Опорно-двигательный аппарат Перемещение частей тела или тела в пространстве

Структура тела

На голове располагаются органы чувств: непарные - нос, язык ; парные - глаза, уши, орган равновесия . Внутри черепной коробки находится головной мозг .

Тело человека покрыто кожей. Кости и мышцы образуют опорно-мышечный аппарат. Внутри тела располагаются две полости тела - брюшная и грудная , которые разделены перегородкой - мышечной диафрагмой . В этих полостях располагаются внутренние органы . В грудной - лёгкие, сердце, сосуды, дыхательные пути и пищевод . В брюшной полости слева (под диафрагмой) - желудок , справа - печень с желчным пузырём и селезёнка . В канале позвоночника находится спинной мозг . В области поясницы расположены почки , от которых отходят мочеточники , входящие в мочевой пузырь с мочеиспускательным каналом .

Половые органы женщины представлены: яичники, маточные трубы, матка .

Половые органы мужчины представлены: яички расположенные в мошонке .

Органы и системы органов

Каждый орган имеет свою форму и определённое место в организме человека. Органы, выполняющие общие физиологические функции, объединяются в систему органов.

Система органов Функции системы Органы, входящие в состав системы
Покровная Защита тела от повреждения и от проникновения в него болезнетворных микроорганизмов Кожа
Костно-мышечная Придание прочности и формы телу, выполнение движений Скелет, мышцы
Дыхательная Обеспечение газообмена Дыхательные пути, лёгкие, дыхательные мышцы
Кровеносная Транспортная, снабжение всех органов питательными веществами, кислородом, выделение продуктов обмена Сердце, кровеносные сосуды
Пищеварительная Переваривание пищи, обеспечение организма энергетическими веществами, защитная Слюнные желез, зубы, язык, пищевод, желудок, кишечник, печень, поджелудочная железа
Выделительная Выведение продуктов обмена веществ, осморегуляция Почки, мочевой пузырь, мочеточники
Система органов размножения Воспроизведение организмов Яичники, яйцеводы, матка, семенники, наружные половые органы
Нервная система Регуляция деятельности всех органов и поведения организма Головной и спинной мозг, периферические нервы
Эндокринная система Гормональная регуляция работы внутренних органов и поведения организма Щитовидная железа, надпочечники, гипофиз и др.

Нервная система осуществляет регуляцию с помощью электрохимических сигналов, нервных импульсов. Эндокринная система действует с помощью биологически активных веществ - гормонов, которые поступают в кровь и, дойдя до органов, изменяют их работу.

Клеточное строение организма

Внешняя и внутренняя среда организма

Внешняя среда - это та среда, в которой находится организм человека. Это совокупность конкретных абиотических и биотических условий, в которых обитает данная особь, популяция или вид. Человек живёт в газообразной среде.

Внутренней средой организма называют ту среду, которая находится внутри организма: она отделяется от внешней среды оболочками тела (кожа, слизистые). В ней находятся все клетки тела. Она жидкая, имеет определённый солевой состав и постоянную температуру. К внутренней среде не относится: содержимое пищеварительного канала, мочевыводящих и дыхательных путей. Граничат с внешней средой: наружный ороговевший слой кожи и некоторые слизистые оболочки. Органы человеческого тела снабжают клетки через внутреннюю среду необходимыми веществами и удаляют ненужные вещества в процессе жизнедеятельности организма.

Строение клетки

По форме, строению и функциям клетки разнообразны, но по структуре сходные. Каждая клетка обособлена от других клеточной мембраной. Большинство клеток имеют цитоплазму и ядро. Цитоплазма - внутренняя среда, живое содержимое клетки, состоящее из волокнистого основного вещества - цитозоля и клеточных органоидов. Цитозоль - растворимая часть цитоплазмы, заполняющая пространство между клеточными органоидами. Цитозоль содержит 90% воды, а также минеральные и органические вещества (газы, ионы, сахара, витамины, аминокислоты, жирные кислоты, белки, липиды, нуклеиновые кислоты и другие). Это место протекания метаболических процессов (например, гликолиза, синтеза жирных кислот, нуклеотидов, аминокислот и т.д.).

В цитоплазме клетки находится ряд структур-органоидов, каждая из которых обладает определённой функцией и имеет закономерные особенности строения и поведения в различные периоды жизнедеятельности клетки. Органоиды - постоянные, жизненно важные составные части клеток.

Строение и функции ядра

Клетка и её содержимое отделены от внешней среды или от соседних клеток поверхностной структурой. Ядро - важнейший, обязательный органоид животной клетки. Имеет шаровидную или яйцевидную форму, диаметром 10–20 мкм. Ядро отделено от цитоплазмы ядерной мембраной. Наружная ядерная мембрана с поверхности, обращённой в цитоплазму покрыта рибосомами, внутренняя мембрана гладкая. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями: через ядерные поры и вследствие отшнуровывания впячиваний и выростов ядерной оболочки.

Полость ядра заполнена гелеобразным ядерным соком (кариоплазмой), где содержатся одно или несколько ядрышек, хромосомы, ДНК, РНК, ферменты, рибосомальные и структурные белки хромосом, нуклеотиды, аминокислоты, углеводы, минеральные соли, ионы, а также продукты деятельности ядрышка и хроматина. Ядерный сок выполняет связующую, транспортную и регуляторную функции.

Клеточное ядро как важнейшая составная часть клетки, содержащая ДНК (гены), выполняет следующие функции:

  1. Хранение, воспроизведение и передача наследственной генетической информации.
  2. Регуляция процессов обмена веществ, биосинтеза веществ, деления, жизненной активности клетки.

В ядре находятся хромосомы, основа которых - молекулы ДНК, определяющие наследственный аппарат клетки. Участки молекул ДНК, ответственные за синтез определённого белка, называют генами . В каждой хромосоме насчитывают миллиарды генов. Контролируя образование белков, гены управляют всей цепочкой сложных биохимических реакций в организме и тем самым определяют его признаки. В обычных клетках (соматических) человеческого организма содержится по 46 хромосом, в половых клетках (яйцеклетках и сперматозоидах) по 23 хромосомы (половинный набор).

В ядре находится ядрышко - плотное округлое тельце, погружённое в ядерный сок в котором осуществляется синтез важных веществ. Оно является центром синтеза и организации рибонуклеопротеидов, которые в виде пучков нитевидных образований формируют хроматиновые структуры ядрышка. Таким образом, ядрышко - место синтеза РНК.

Органоиды клетки

Постоянные клеточные структуры, каждая из которых выполняет свои особые функции, называются органоидами . В клетке они играют ту же роль, что и органы в организме.

Основными мембранными структурами клетки являются цитоплазматическая мембрана , отделяющая клетку от соседних клеток или межклеточного вещества, эндоплазматический ретикулум , аппарт Гольджи, митохондриальная и ядерная мембраны. Каждая из этих мембран имеет особенности строения и определённые функции, но все они построены по одному типу.

Функции цитоплазматической мембраны :

  1. Ограничение содержимого цитоплазмы от внешней среды образованием поверхности клетки.
  2. Защита от повреждений.
  3. Распределение внутриклеточной среды на отсеки, в которых протекают определённые метаболические процессы.
  4. Избирательный транспорт веществ (полупроницаемость). Наружная цитоплазматическая мембрана легко проницаема для одних веществ и непроницаема для других. Например, концентрация ионов К + всегда выше в клетке, чем в окружающей среде. Напротив, ионов Na + всегда больше в межклеточной жидкости. Мембрана регулирует поступление в клетку определённых ионов и молекул и выведение веществ из клетки.
  5. Энерготрансформирующая функция - преобразование электрической энергии в химическую.
  6. Рецепция (связывание) и проведение регуляторных сигналов в клетку.
  7. Секреция веществ.
  8. Образование межклеточных контактов, соединение клеток и тканей.

Эндоплазматическая сеть - мембранная разветвлённая система каналов диаметром 25–75 нм и полостей, пронизывающих цитоплазму. Особенно много каналов в клетках с интенсивным обменом веществ, по которым транспортируются синтезированные на мембранах вещества.

Различают два типа мембран эндоплазматической сети: гладкая и шероховатая (или гранулярную, содержащую рибосомы). На гладких мембранах находятся ферментные системы, участвующие в жировом и углеводном обменах, детоксикации веществ. Такие мембраны преобладают в клетках сальных желёз, где осуществляется синтез жиров, печени (синтез гликогена). Основная функция шероховатых мембран - синтез белков, который осуществляется в рибосомах. Особенно много шероховатых мембран в железистых и нервных клетках.

Рибосомы - мелкие сферические тельца диаметром 15–35 нм, состоящие из двух субъединиц (большой и малой). Рибосомы содержат белки и р-РНК. Рибосомальная РНК (р-РНК) синтезируется в ядре на молекуле ДНК некоторых хромосом. Там же формируются рибосомы, которые затем покидают ядро. В цитоплазме рибосомы могут располагаться свободно или быть прикреплёнными к наружной поверхности мембран эндоплазматической сети (шероховатые мембраны). В зависимости от типа синтезируемого белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы. В таком комплексе рибосомы связаны длинной молекулой м-РНК. Функция рибосом - участие в синтезе белка.

Аппарат Гольджи - система мембранных трубочек, образующих стопку уплощенных мешочков (цистерн) и связанных с ними систем пузырьков и полостей. Аппарат Гольджи особенно развит в клетках, вырабатывающих белковый секрет, в нейронах, яйцеклетках. Цистерны соединены каналами ЭПС. Синтезированные на мембранах ЭПС белки, полисахариды, жиры транспортируются к аппарату Гольджи, конденсируются внутри его структур и «упаковываются» в виде секрета, готового либо к выделению, либо к использованию в самой клетке в процессе её жизнедеятельности. Аппарат Гольджи участвует в обновлении биомембран и образовании лизосом.

Лизосомы - маленькие округлые тельца, диаметром около 0,2–0,5 мкм, ограниченные мембраной. Внутри рибосом кислая среда (рН 5) и содержится комплекс (более 30 типов) гидролитических ферментов для расщепления белков, липидов, углеводов, нуклеиновых кислот и другого. В клетке несколько десятков лизосом (особенно их много в лейкоцитах).

Лизосомы образуются или из структур комплекса Гольджи, или непосредственно из эндоплазматической сети. Они приближаются к пиноцитозным или фагоцитозным вакуолям и изливают в их полость своё содержимое. Основная функция лизосом - участие во внутриклеточном переваривании пищевых веществ путём фагоцитоза и секреции пищеварительных ферментов. Лизосомы могут также расщеплять и удалять отмершие органоиды и отработанные вещества, разрушать структуры самой клетки при её отмирании, в ходе эмбрионального развития и в ряде других случаев.

Митохондрии - мелкие тельца, ограниченные двухслойной мембраной. Митохондрии могут иметь различную форму - сферическую, овальную, цилиндрическую, нитевидную, спиральную, вытянутую, чашевидную, разветвлённую. Размеры их составляют 0,25–1 мкм в диаметре и 1,5–10 мкм в длину. Количество митохондрий в клетке - несколько тысяч, в разных тканях неодинаково, что зависит от функциональной активности клетки: их больше там, где интенсивнее синтетические процессы (например, в печени).

Стенка митохондрий состоит из двух мембран - наружной гладкой и внутренней складчатой, в которую встроена цепь транспорта электронов, АТФаза, и межмембранного пространства величиной 10–20 нм. От внутренней мембраны вглубь органоида отходят перегородки, или кристы . Складчатость значительно увеличивает внутреннюю поверхность митохондрий.

На мембранах крист в митохондриальном матриксе (внутри митохондрий) располагаются многочисленные ферменты, участвующие в энергетическом обмене (ферменты цикла Кребса, окисления жирных кислот и другие). Митохондрии тесно связаны с мембранами ЭПС, каналы которой нередко открываются прямо в митохондрии. Число митохондрий может быстро увеличиваться делением, что обусловлено молекулой ДНК, входящей в их состав. Так, внутри митохондрий содержатся собственные ДНК, РНК, рибосомы, белки. Основная функция митохондрий - синтез АТФ в ходе окислительного фосфорилирования (аэробного дыхания клетки).

Структура и функции органоидов клетки
Схематическое изображение Структура Функции
Плазматическая мембрана (клеточная мембрана)

Два слоя липида (бислой) между двумя слоями белка Избирательно проницаемый барьер, регулирующий обмен между клеткой и средой
Ядро

Самая крупная органелла, заключённая в оболочку из двух мембран, пронизанную ядерными порами. Содержит хроматин - в такой форме раскрученные хромосомы находятся в интерфазе. Содержит ядрышко Хромосомы содержат ДНК - вещество наследственности. ДНК состоит из генов , регулирующих все виды клеточной активности. Деление ядра лежит в основе размножения клеток, а следовательно, и процесса воспроизведения. В ядрышке образуются р-РНК и рибосомы
Эндоплазматический ретикулум (ЭПС)

Система уплощённых мембранных мешочков - цистерн - в виде трубочек и пластинок. Образует единое целое с наружной мембраной ядерной оболочки Если поверхность ЭПС покрыта рибосомами, то он называется шероховатым . По цистермам ЭПС транспортируется белок, синтезированный на рибосомах. Гладкий (без рибосом) служит местом синтеза липидов и стероидов
Рибосома

Очень мелкие органеллы, состоящие из двух субчастиц - большой и малой. Содержат белок и РНК приблизительно в равных долях. Рибосомы обнаруживаемые в митохондриях ещё мельче Место синтеза белка, где удерживаются в правильном положении различные взаимодействующие молекулы. Рибосомы связаны с ЭПС или свободно лежат в цитоплазме. Много рибосом могут образовать полисому (полирибосому), в которой они нанизаны на единую нить матричной РНК
Митохондрия

Митохондрия окружена оболочкой из двух мембран; внутренняя мембрана образует складки (кристы). Содержит матрикс, в котором находятся небольшое количество рибосом, одна кольцевая молекула ДНК и фосфатные гранулы При аэробном дыхании в кристах происходит окислительное фосфорилирование и перенос электронов, а в матриксе работают ферменты, участвующие в цикле Кребса и окислении жирных кислот
Аппарат Гольджи

Стопка уплощённых мембранных мешочков - цистерн. На одном конце стопки мешочки непрерывно образуются, а с другого - отшнуровываются в виде пузырьков Многие клеточные материалы (например, ферменты ЭПС), претерпевают модификацию в цистернах и транспортируются в пузырьках. Аппарат Гольджи участвует в процессе секреции, и в нём образуются лизосомы
Лизосома

Простой сферический мембранный мешочек (одинарная мембрана), заполненный пищеварительными (гидролитическими) ферментами Выполняет много функций, всегда связанных с распадом каких-либо структур или молекул. Лизосомы играют роль в аутофагии, автолизе, эндоцитозе, экзоцитозе

Деление клетки

Деление клетки - это сложный процесс бесполого размножения. У одноклеточных организмов он ведёт у увеличению числа особей, тогда как многоклеточные, начинающие своё существования с одной клетки - зиготы , создают многоклеточный организм. Это сложный процесс, начинающийся с того, что рядом каждой молекулы ДНК образуется такая же молекула. Таким образом, в хромосоме оказывается две одинаковые молекулы ДНК. Перед началом деления клетки ядро увеличивается в размерах. Хромосомы закручиваются в спираль, а ядерная оболочка исчезает. Органоиды клеточного центра расходятся к противоположным полюсам и между ними образуется веретено деления. Затем хромосомы выстраиваются по экватору. Парные молекулы ДНК каждой хромосомы соединяются с центриолями - одна молекула ДНК с одной центриолей, а её двойник - с другой. Вскоре молекулы ДНК начинают расходиться (каждая к своему полюсу), образуя новые наборы, состоящие из одинаковых хромосом и генов. В дочерних клетках образуются хромосомные клубки, вокруг которых формируется ядерная оболочка. Хромосомы раскручиваются и перестают быть видимыми. После того, как ядро сформировалось делятся органоиды, цитоплазма - появляется перетяжка разделяющая одну клетку на две дочерние.

Деление клетки
Фазы деления Рисунок Митоз
Профаза

  • хромосомы спирализуются, утолщаются, состоят из двух сестринских хроматид;
  • ядерная мембрана растворяется;
  • образуются нити веретена деления
Метафаза

  • хромосомы выстраиваются в плоскости экватора;
  • нити веретена деления соединены с центромерами
Анафаза

  • центромеры делятся, к полюсам расходятся сестринские хромосомы;
  • у каждого полюса образуется столько хромосом, сколько было в исходной материнской клетке
Телофаза

  • делится цитоплазма и все её органеллы;
  • в середине клетки образуется перетяжка;
  • формируется ядро;
  • возникает две дочерние клетки, полностью идентичные материнской

Биологическое значение митоза заключается в воспроизведении идентичной клетки, поддержании постоянного числа хромосом. Результатом его работы является образование двух генетически однородных клеток, идентичных материнской .

Жизненные процессы клетки

В клетках любого организма идут процессы обмена веществ . Поступающие в клетку питательные вещества образуют сложные вещества; формируются клеточные структуры. Помимо этого с образованием новых веществ идут процессы биологического окисления органических веществ - углеводов, белков, жиров, при этом выделяется энергия необходимая для жизнедеятельности клетки, а продукты распада удаляются.

Ферменты . Синтез и распад веществ происходит под действием ферментов - биологических катализаторов белковой природы, которые ускоряют во много раз биохимические процессы в клетке. Один фермент действует только на определённые соединения - субстрат данного фермента.

Рост и развитие клетки . В процессе жизни организма происходит рост и развитие множества его клеток. Рост - увеличение размеров и массы клетки. Развитие - возрастные изменения, и достижения клеткой способностей выполнять свои функции.

Покой и возбуждение клеток . Клетки в организме могут находиться в состоянии покоя и возбуждения. При возбуждении клетка включается в работу и выполняет свои функции. Возбуждение клетки обычно связано с раздражением. Раздражение - это процесс влияния на клетку механическим, химическим, электрическим, тепловым и т.д. воздействием. В результате клетка из состояния покоя переходит в состояние возбуждения (активно работает). Возбудимость - способность клетки отвечать на раздражение (этой способностью обладают мышечные и нервные клетки).

Ткани

Ткани организма человека делят на четыре типа: эпителиальные , или пограничные; соединительные , или ткани внутренней среды организма; сократимые мышечные ткани и ткани нервной системы .

Ткани общего назначения - эпителиальные и внутренней среды (кровь, лимфа и соединительная ткань: собственно соединительная, хрящевая, костная).

Специальные ткани - мышечная, нервная.

Эпителиальная ткань (покровная) - смежная ткань, покрывающая организм снаружи; выстилает внутренние органы и полости; входит в состав печени, желёз, лёгких. Кроме того, они выстилают внутреннюю поверхность кровеносных сосудов, дыхательных путей, мочеточников. К эпителиальным тканям относится и железистая ткань, вырабатывающая различные виды секретов (пот, слюну, желудочный сок, сок поджелудочной железы). Клетки этой ткани располагаются в виде пласта, а их особенностью является их полярность (верхняя и нижняя часть клетки). Эпителиальные клетки обладают способностью к восстановлению (регенерация ). В эпителиальной ткани нет кровеносных сосудов (клетки питаются диффузно, через базальную пластинку).

Различные виды эпителия
Вид ткани (рисунок) Строение ткани Местонахождение Функции
Плоский эпителий

  • гладкая поверхность клеток;
  • клетки плотно прилегают друг к другу;
  • однослойный;
  • покровный
поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов, плевра, брюшина покровная, защитная, выделительная (газообмен, выделение мочи)
Кубический эпителий

  • кубические плотно примыкающие друг к другу клетки;
  • однослойный;
  • железистый
канальцы почек, слюнные железы, железы внутренней секреции реарбсорбция (обратное) при образовании вторичной мочи, выделение слюны, секретов с гормонами
Цилиндрический эпителий (призматический)

  • клетки цилиндрической формы;
  • однослойный;
  • покровный
желудок, кишечник, желчный пузырь, трахея, матка слизистая оболочка желудка и кишечника
Однослойный мерцательный эпителий

  • состоит из клеток с многочисленными волосками (ресничками);
  • однослойный
дыхательные пути, спинномозговой канал, желудочки мозга, яйцеводы защитная (реснички задерживают и удаляют частицы пыли), организует ток жидкости, перемещение яйцеклетки
Псевдомногослойный

  • клетки конической формы лежат в один слой, но чередуясь узкими и широкими концами, создают двурядное положение ядер;
  • покровный
обонятельные зоны, вкусовые сосочки языка, мочевой канал, трахеи чувствительный эпителий . Восприятие запаха, вкуса, наполнение мочевого пузыря, ощущение присутствия посторонних частиц в трахее
Многослойный

  • ороговевают верхние слои клеток;
  • покровный
кожа, волосы, ногти защитная, терморегулирующая, покровная

Таким образом, эпителиальной ткани присущи следующие функции: покровная, защитная, трофическая, секреторная .

Соединительные ткани

Соединительные ткани или ткани внутренней среды представлены кровью, лимфой и соединительной тканью. Особенностью этой ткани является наличие, кроме клеточных элементов, большого количества межклеточного вещества, представленного основным веществом и волокнистыми структурами (образованы фибриллярными белками - коллагеном, эластином и т.д.). Соединительная ткань подразделяется на: собственно соединительную, хрящевую, костную .

Собственно соединительная ткань создаёт прослойки внутренних органов, подкожную клетчатку, связки, сухожилия и другое. Хрящевая ткань образует:

  • гиалиновый хрящ - образует суставные поверхности;
  • волокнистый - находится в межпозвоночных дисках;
  • эластический входит - в состав ушных раковин и надгортанника.

Костная ткань формирует кости скелета, прочность которой придают отложения в ней нерастворимых кальциевых солей. Костная ткань принимает участие в минеральном обмене веществ организма. (См. в разделе «Опорно-двигательная система»).

Ткани внутренней среды
Вид ткани (рисунок) Строение ткани Местонахождение Функции
Рыхлая соединительная ткань

  • Рыхло расположенные волокна и клетки, переплетающиеся между собой;
  • межклеточное вещество бесструктурное, с тучными и жировыми клетками.
подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы, кровеносные сосуды, брыжейки соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Участвует в терморегуляции тела
Хрящевая ткань

  • Живые круглые или овальные клетки хондроциты , лежащие в капсулах;
  • коллагеновые волокна;
  • межклеточное вещество плотное, упругое,прозрачное.
межпозвонковые диски, хрящи гортани, трахеи, рёбер, ушная раковина, поверхность суставов, основания сухожилий, скелет зародыша сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин. Присоединение сухожилий к костям

Функции соединительной ткани: защитная, опорная, питательная (трофическая) .

Клетки мышечной ткани обладают свойствами: возбудимости, сократимости, проводимости .

Разновидности мышечной ткани

Различают три типа мышечной ткани: гладкая, поперечно-полосатая, сердечная.

Ткани внутренней среды
Вид ткани (рисунок) Строение ткани Местонахождение Функции
Гладкая ткань

  • клетки имеют веретенообразную форму;
  • клетки содержат одно ядро;
  • не имеют поперечной исчерченности
образует мускулатуру внутренних органов, входит в состав стенок кровеносных и лимфатических сосудов иннервируются вегетативной нервной системой и осуществляют относительно медленные движения и тонические сокращения
Поперечно-полосатая ткань (мышечное волокно)

  • длинная многоядерная клетка с поперечной исчерченностью, обусловленной определённым составом и расположением мышечных белков;
  • содержат сокращающиеся волокна
скелетная мускулатура, мышцы языка, глотки, начальная часть пищевода сокращаются в ответ на импульсы, приходящие от двигательных нейронов спинного и головного мозга
Сердечная ткань

  • имеет исчерченность и обладает автономией
  • клетки соединены друг с другом при помощи отростков (вставочные диски)
сочетает свойства гладкой и поперечно-полосатой мышечных тканей; сердце отвечает за сокращение всех мышечных элементов

Функции мышечной ткани: перемещение тела в пространстве; смещение и фиксация частей тела; изменение объёма полости тела, просвета сосуда, движение кожи; работа сердца.

Нервная ткань

Нервная ткань формирует головной и спинной мозг, нервные ганглии и волокна. Клетками нервной ткани являются нейроны и глиальные клетки. Главная особенность нейронов - высокая возбудимость. Они получают раздражение (сигналы) из внешней и внутренней среды организма, проводят и перерабатывают их. Нейроны собраны в очень сложные и многочисленные цепи, которые необходимы для получения, переработки, хранения и использования информации.

Типы нейронов:

  1. Униполярный (двигательный, центробежный )
  2. Псевдобиполярный (чувствительный, центростремительный )
  3. Мультиполярный (входит в состав головного мозга )
  1. Дендриты
  2. Тело нейрона
  3. Клеточное ядро
  4. Цитоплазма
  5. Аксоны
  6. Шванновская клетка
  7. Окончания аксона
  8. Дендрон

Нейрон состоит из тела клетки (сомы) и двух видов отростков - дендритов, аксонов и концевых пластин . В теле нейрона находится ядро с округлыми ядрышками.

Строение нейрона (нервная клетка)

  1. Тело нейрона
  2. Дендриты
  3. Аксоны
  4. Концевые пластинки
  5. Синаптические пузырьки
  6. Миелиновая оболочка
  7. Перехват Ранвье
  8. Вещество Ниссля
  9. Окончание нервного волокна
  10. Участок мышечного волокна, находящийся в состоянии сокращения

Дендриты (2) - короткие, толстые, сильно ветвящиеся отростки, проводящие нервные импульсы (возбуждение) к телу нервной клетки.

Аксон (3) - один длинный (до 1,5 м) неветвящийся отросток нервной клетки, проводящий нервный импульс от тела клетки к её концевому отделу. Отростки - это полые трубочки, наполненные цитоплазмой, которая течёт по направлению к концевым пластинам. Цитоплазма забирает ферменты, которые образовались в структурах гранулярного эндоплазматического ретикулума (8) и катализирующие синтез медиаторов в концевых пластинах (4). Медиаторы запасаются в синаптических пузырьках (5). Аксоны некоторых нейронов защищены с поверхности миелиновой оболочкой (6), образованной шванновскими клетками , обвивающими аксон. Эта оболочка состоит из клеток своеобразной нервной ткани - глии , в которую погружены все нервные клетки. Глия играет вспомогательную роль - она выполняет изолирующую, опорную, трофическую и защитную функции. Места, в которых аксон не покрыт (миелиновой оболочкой), называют перехватами Ранвье (7). Миелин (жироподобное белое вещество) является остатком мембран мёртвых клеток и его состав обеспечивает изолирующие свойства клетки.

Нервные клетки соединяются друг с другом посредством синапсов. Синапс - место контакта двух нейронов, где происходит передача нервного импульса от одной клетки к другой. Синапсы образуются в местах контакта аксона с клетками, которым он передаёт информацию. Эти участки несколько утолщены (10), так как содержат пузырьки с раздражающей жидкостью. Если нервные импульсы доходят до синапса, пузырьки лопаются, жидкость изливается в синоптическую щель и воздействует на оболочку клетки, принимающей информацию. В зависимости от состава и количества биологически активных веществ, содержащихся в жидкости, принимающая информацию клетка может возбудиться и усилить свою работу, либо затормозиться - ослабить или вовсе прекратить её.

Воспринимающие информацию клетки обычно имеют много синапсов. Через одни из них они получают стимулирующие сигналы, через другие - отрицательные, тормозные. Все эти сигналы суммируются, после чего следует изменение работы.

Таким образом, к функциям нервной ткани относят: получение, переработку, хранение, передачу информации поступающей из внешней среды и внутренних органов; регуляция и согласование деятельности всех систем организма.

Физиологические системы органов

Ткани организма человека и животного образуют органы и физиологические системы органов: покровную, систему опоры и движения, пищеварительную, кровеносную, дыхательную, выделительную, половую, эндокринную, нервную.

Физиологические системы Органы образующие систему Значение
Покровная система Кожа и слизистые оболочки Предохраняет организм от внешних воздействий
Система опоры и движения Кости, образующие скелет и мышцы Придают телу форму, обеспечивают опору и движение, защищают внутренние органы
Пищеварительная система Органы ротовой полости (язык, зубы, слюнные железы ), глотку, пищевод, желудок, кишечник, печень, поджелудочная железа Обеспечивают переработку питательных веществ в организме
Кровеносная система Сердце и кровеносные сосуды Осуществляет процесс кровообращения и обмена веществ между организмом и средой
Дыхательная система Носовая полость, носоглотка, трахея, лёгкие Обеспечивают газообмен
Выделительная система Почки, мочеточники, мочевой пузырь, мочеиспускательный канал Удаляет из организма конечные токсичные продукты обмена веществ
Половая система Мужские органы (семенники, мошонка, предстательная железа, пенис).
Женские органы (яичники, матка, влагалище, наружные женские половые органы)
Обеспечивают размножение
Эндокринная система Железы внутренней секреции (щитовидную, половые, поджелудочную, надпочечники и др.) Вырабатывают гормоны, регулирующие функции и метаболизм в органах и тканях
Нервная система Нервная ткань, пронизывающая все органы и ткани Регулирует согласованное функционирование всех систем и целостного организма в изменяющихся условиях окружающей среды

Рефлекторная регуляция

Нервная система регулирует все процессы в организме, а также обеспечивает соответствующую реакцию организма на воздействие внешней среды. Эти функции нервной системы выполняется рефлекторно. Рефлекс - ответ организма на раздражение, который происходит при участии центральной нервной системы. Рефлексы осуществляются вследствие распространения по рефлекторной дуге процесса возбуждения. Рефлекторная деятельность - это результат взаимодействия двух процессов - возбуждения и торможения .

Возбуждение и торможение - два противоположных процесса, взаимодействие которых обеспечивает согласованную деятельность нервной системы и согласованную работу органов нашего тела.

Центральная и периферическая нервная система

Большинство нейронов находится в головном и спинном мозге. Они составляют центральную нервную систему (ЦНС). Часть этих нейронов выходит за её пределы: их длинные отростки объединяются в пучки, которые в составе нервов идут ко всем органам тела. Нервная система состоит из нервных клеток - нейронов (насчитывается 25 млрд нейронов в головном мозге и 25 млн на периферии.

Центральная нервная система включает в себя головной и спинной мозг. Кроме нервов, в головном мозге и не ЦНС встречаются скопления тел нейронов - это нервные узлы. Периферическая часть нервной системы включает в себя отходящие от головного и спинного мозга нервы и нервные узлы, расположенные вне головного и спинного мозга. По функции нервная система делится на соматическую и вегетативную нервную систему. Соматическая - осуществляет связь организма с внешней средой (восприятие раздражений, регуляцию движений поперечно-полосатой мускулатуры и другое), а вегетативная - регулирует обмен веществ и работу внутренних органов (биение сердца, тонус сосудов, перистальтические сокращения кишечника, секрецию различных желёз и т.д.). обе эти системы работают в тесном взаимодействии, но вегетативная нервная система обладает некоторой самостоятельностью (автономностью), управляя непроизвольными функциями.

Рефлекс и рефлекторная дуга

Деятельность нервной системы носит рефлекторный характер. Рефлекс - закономерная ответная реакция организма на изменения внешней или внутренней среды, осуществляемая центральной нервной системой в ответ на раздражение рецепторов. Рецепторы - нервные окончания, воспринимающие информацию об изменениях, происходящих во внешней и внутренней среде. Любое раздражение (механическое, световое, звуковое, химическое, электрическое, температурное ), воспринимаемое рецептором, преобразуется в процесс возбуждения. Возбуждение передаётся по чувствительным - центростремительным нервным волокнам в центральную нервную систему, где происходит срочный процесс переработки импульсов. Отсюда импульсы направляются по волокнам центробежных нейронов к исполнительным органам, реализующим ответную реакцию на раздражение.

Рефлекторная дуга - это путь, по которому проходят нервные импульсы от рецепторов к исполнительному органу. Для осуществления любого рефлекса необходима согласованная работа всех звеньев рефлекторной дуги.

Схема рефлекторной дуги.

  1. Внешний раздражитель
  2. Окончания чувствительного нерва в коже
  3. Сенсорный нейрон
  4. Синапс
  5. Вставочный нейрон
  6. Синапс (передача от нейрона к нейрону )
  7. Моторный нейрон

В осуществлении любого рефлекторного действия участвуют процессы возбуждения, вызывающие определённую деятельность, и процесс торможения, выключающие те нервные центры, которые мешают осуществлению рефлекторных действий. Процесс торможения противоположен возбуждению. Взаимодействие процессов возбуждения и торможения лежит в основе нервной деятельности, регуляции и координации функций в организме.

Таким образом, эти оба процесса (возбуждения и торможения ) тесно связаны между собой, что обеспечивает согласованную деятельность всех органов и всего организма.

1 Уровни организации человеческого организма

3. Онтогенез, его возрастные периоды

Строение и функции организма изучают такие разделы биологии, как анатомия, физиология и гигиена.

Анатомия человека - наука, изучающая строение тела человека, его органов и систем.

Физиология человека - наука о процессах жизнедеятельности (функциях) и механизмах их регулирования в клетках, тканях, opianax. системах органов и целостном организме.

Гигиена человека - наука о влиянии физических, химических, биологических и социальных факторов окружающей среды на здоровье человека, его работоспособность и продолжительность жизни.

Эти науки тесно взаимосвязаны и составляют основу современной медицины, педагогики, психологии и валеологии.

Строение и жизнедеятельность различных органов и всего организма не отделимы друг от друга (единство строения и функции). Знание строения и функций человеческого организма позволяет каждому сознательно соблюдать научно-обоснованные правила личной и общественной гигиены, избегать различных заболеваний и быть здоровым, физически развитым.

Организм - самостоятельно существующая единица органического мира, представляющая собой саморегулирующуюся систему, реагирующую как единое целое на различные изменения внешней среды.

Каждый организм обладает совокупностью признаков и свойств, отличающих его от неживой природы: обмен веществ и энергии, самовоспроизведение, наследственность, изменчивость, рост и развитие, раздражимость, саморегуляция.

Человек с его сложным анатомическим строением, физиологическими и психическими особенностями представляет собой высший этап эволюции органического мира.

1. Уровни организации человеческого организма

Для каждого организма характерна определенная организация ею структур. Выделяют шесть уровней организации человеческого организма: 1) молекулярный; 2) клеточный: 3) тканевой; 4) органный; 5) системный;6) организменный.

Молекулярный уровень организации. Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул (биополимеров): нуклеиновых кислот, белков, жиров (липидов), полисахаридов, витаминов, ферментов и других органических веществ. Молекулы белка, в свою очередь, расщепляются в организме на молекулы мономеры - аминокислоты, жиры - на молекулы глицерина и жирных кислот, углеводы - на молекулы глюкозы и т.д. С молекулярного уровня начинаются важнейшие процессы жизнедеятельности организма.

Клеточный уровень организации. Клетка -элементарная структурная, функциональная и генетическая единица многоклеточного организма. В теле человека насчитывают приблизительно К)"4 клеток. Клетки сложного организма специализированы

Каждая клетка имеет клеточную мембрану, цитоплазму и ядро. Мембрана ограничивает внутреннюю среду клетки, защищает ее от повреждений. регулирует обмен веществ между клеткой и средой, обеспечивает взаимосвязь с другими клетками. Цитоплазма - внутренняя полужидкая среда клетки, к которой находятся органоиды клетки, в том числе и ядро, которое выполняет функции хранения и передачи наследственной информации, регуляции синтеза белка; деление ядра лежит в основе размножения клеток

Тканевой, уровень организации. Ткани - это группы клеток и межклеточного вещества, объединенные общим строением, функцией и происхождением. Различают четыре основные группы тканей: эпителиальная, соединительная, мышечная и нервная.

Эпителиальная (пограничная) ткань находится на поверхностях, граничащих с внешней средой, и выстилает изнутри стенки полых органов, кровеносных сосудов, входит в состав желез организма. Эпителий обладает" высокой способностью к восстановлению (регенерации), служит материалом для волос, ногтей, эмали зубок.

Соединительные ткани (ткани внутренней среды) выполняют питательную, транспортную и защитную (кровь, лимфа), а также опорную (сухожмлия. хрящи, костная ткань) функции. Разновидностью соединительной ткани является жировая.

Мышечная ткань делится натри вида:

Поперечно-полосатую (скелетные мышцы, мышцы языка, глотки, гортани);

Гладкую (образует стенки внутренних органов);

Сердечную (как и скелетная она имеет поперечно-полосатое строение, но подобно гладкой мускулатуре сокращается непроизвольно).

Нервная ткань, состоящая из нервных клеток (нейронов), участвует в проведении нервного импульса от различных органов и тканей в центральную нервную систему и обратно.

Органный уровень организации. Различные ткани, соединяясь между собой, образуют органы: сердце, почки, легкие, головной мозг, спинной мозг, мышца, мочевой пузырь, матка, грудная железа, желудок, глаз, ухо и т.д. Орган занимает постоянное положение, имеет определенное строение, форму и функции Органы, сходные по своему строению, функции и развитию, объединяются в системы органов

Системный уровень организации. Совокупность органов, участвующих в выполнении какого-либо сложного акта деятельности, образующих анатомические и функциональные объединения - системы органов. Различают девять основных систем организма.

1 .Система органов движения или опорно-двигательный аппарат объединяет все кости (скелет), их соединения (суставы, связки) и скелетные мышцы. Благодаря этой системе организм передвигается во внешней среде; кости скелета защищают внутренние органы от механических повреждений (череп - защищает мозг, грудная клетка - сердце и легкие).

2 Пищеварительная система объединяет органы, выполняющие функции приема пищи, ее механической и химической переработки, всасывания питательных веществ в кровь и лимфу и выведения непереваренных частей пищи. Пищеварительная система состоит из ротовой полости, глотки, пищевода, желудка, тонкого и толстого кишечника. К пищеварительной системе относятся слюнные железы, печень и поджелудочная железа.

3. Дыхательная система осуществляет потребление организмом кислорода и выделение углекислого газа. т.е. функцию газообмена между организмом и внешней средой. К системе органов дыхания относятся носовая полость, гортань, трахея, бронхи и легкие.

4. Мочевыделигельная система выполняет функцию выделения из организма конечных продуктов обмена и функцию поддержания постоянства внутренней среды организма (гомеостаза). в частности водно-солевого баланса. К мочевыдедительной системе относятся почки, мочевой пузырь, мочеточники и мочеиспускательный канат.

5 Половая система объединяет органы размножения и выполняет функцию продления рода человеческого. Различают мужскую и женскую половые системы., которые включают наружные и внутренние половые органы (гонады).

К мужским половым органам относятся наружные (половой член, мошонка) и внутренние (яички с придатками, семявыносящис н ссмявыбрасывающие протоки, семенные пузырьки, предстательная и куперовы железы). Яички - парные мужские половые железы, вырабатывающие мужские половые клетки (сперматозоиды) и выделяющие в кровь мужские половые гормоны - андрогены. Процесс реста и развития мужских половых клеток называется сперматогенезом.

К женским половым органам относятся наружные (большие и малые половые губы, клитор) и внутренние (яичники, маточные грубы, матка, влагалище). Матка полый мышечный орган, предназначенный для вынашивания плода. Ее внутренний слой (эндометрий) выстлан слизистым эпителием, который обновляется в каждом менструальном цикле. Яичник - парная женская половая железа, в которой происходит развитие и созревание женских половых клеток (яйцеклеток)., а также образование женских половых гормонов - эстрогенов и прогестерона. Процесс выхода созревшей яйцеклетки из яичника называется, овуляцией.

6. Эндокринная система состоит из желез внутренней секреции, к которым относятся гипофиз, эпифиз, вилочковая железа, щитовидная, поджелудочная, паращитовидная. половые железы, надпочечники. Они вырабатывают особые активные вещества (гормоны), которые непосредственно всасываются в кровь. Гормоны разносятся кровью по всему организму и оказывают регулирующее влияние на различные функции, прежде всего на обмен веществ, активность генов, процессы онтогенетическою развития, днфференцировку тканей, формирование пола, размножение, тонус коры головного мозга и т.д.

7. Сердечно-сосудистая система (ССС) обеспечивает непрерывное движение крови в организме (кровообращение), благодаря чему осуществляются транспортные функции крови: доставка тканям кислорода, питательных веществ и гормонов и удаление из тканей веществ, образующихся в результате процессов обмена. ССС включает сердце, кровеносные (артерии, вены и капилляры) и лимфатические сосуды. ССС играет важную роль в ^интеграции организма в единое целое. Через кровь и лимфу осуществляется связь между органами.

8.Система органов чувств объединяет органы зрения, слуха, обоняния, вкуса и осязания. Они воспринимают информацию внешней среды, играют важную роль в обмене информацией между организмом и средой.

0.Нервная система играет ведущую роль в объединении организма в единое целое, регулирует деятельность всех внутренних органов и систем оркшов. Она осуществляет связь организма с окружающей внешней средой на основе условных и безусловных рефлексов, обеспечивая приспособление к изменяющимся условиям жизни, а также осуществляет психическую деятельность человека, возникающую на основе физиологических процессов ощущения, восприятия и мышления.

Нервная система включает головной и спинной мозг, отходящие от них нервы и все их разветвления. Головной и спинной мозг образуют центральную нервную систему (ЦНС). Высшим отделом ЦНС является кора головного мозга. Все нервы, отходящие от головною и спинного мозга, составляют периферическую нервную систему. Деятельность спинного мозга и периферической нервной системы регулируется вышележащими отделами ЦНС. т.е. головным мозгом.

Головной мозг расположен в черепе. В нем находятся нервные центры, обеспечивающие важнейшие функции организма и психическую деятельность человека. Масса головного мозга мужчин в среднем составляет 1400 г, а женщин - 1300 г. Эти различия отражают не умственную способность, а соотношение массы мозга к массе тела.

В головном мозгу различают большие полушария и ствол мозга. В стволе мозга находятся центры дыхания, сердечной деятельности, пищеварения, рвош, координации движений и регуляции тонуса мышц, регуляции ощущений органами чувств и т.д. Это центры безусловных рефлексов - врожденных ответных реакций организма, обеспечивающих важные жизненные функции организма: дыхание, сердцебиение, пищеварение, терморегуляция, поддержание тонуса мышц.

Большие полушария (левое и правое) состоят из серого и белого вещества. Серое вещество, состоящее из тел нервных клеток, образует кору головного мозга толщиной около 3-4 мм. Белое вещество, образованное, отростками нервных клеток, расположено под корой. Между правым и левым полушариями головного мозга существует межполушарнаи асимметрия. Это означает, что функции обоих полушарий не совсем одинаковы. Например, у правшей (люди, у коюрых главная действующая рука правая) центр речи находится в левом полушарии. Левое полушарие у правшей является главным нервным субстратом человеческого сознания и называется доминантным

Лобные доли больших полушарий у человека - самые большие по площади участки коры (у животных они отсутствую!, кроме шимпанзе). Одна из функций лобной доли состоит в управлении врожденными поведенческими реакциями при помощи накопленного опыта. Для больных с пораженными лобными долями коры характерна импульсивность, несдержанность, раздражительность и другие проявления психической неустойчивости. Такие больные часто становятся грубыми, нетактичными, хотя интеллект у них сохраняется, они часто вступают в конфликт с другими людьми.

Кора головного мозга оказывает влияние на все функции организма и обеспечивает связь организма с внешней средой, обусловливая высшую нервную деятельность организма (психическую деятельность, мышление, память, речь и т.д.). В коре больших полушарий находятся центры условных рефлексов. Условные рефлексы - это приобретенные в процессе обучения знания, в течение жизни - навыки и умения. Если при повреждающих воздействиях погибают клетки коры головного мозга, то человек полностью или частично лишается знаний, умений и навыков, полученных им ранее. Такое воздействие возможно при клинической смерти, когда клетки коры головного мозга погибают от недостатка кислорода. Память имеет огромное значение в жизни человека. Можно лишь приблизительно оценить информационную емкость человеческого мозга. Обитая информационная емкость головного моз! а человека равна примерно Зх10хбит (бит - единица информации). Из всей информации, окружающей человека, в долговременную память поступает лишь 1%.

Уровень целостного организма. Организм человека функционирует как единое целое и представляет собой саморегулирующуюся систему. Взаимосвязанная, согласованная работа всех органов и физиологических систем обеспечивается гуморальной и нервной регуляцией.

2. Основные функции обеспечения жизнедеятельности организма

Гуморальная (химическая) регуляция функций осуществляется за счет переноса током крови или лимфы гормонов, неорганических веществ. газов, продуктов обмена и других активных веществ. Этот вид регуляции с точки зрения эволюционного развития является более древним, чем нервная регуляция. Однако за счет ^моральной регуляции невозможна быстрая перестройка деятельности организма, т.к. этот вид регуляции ограничен скоростью движения крови по сосудам.

Нервная регуляция обеспечивает быструю перестройку функций органов и организма в целом в соответствии с условиями существования. Это возможно потому, что скорость распространения нервных импульсов по нервным проводникам значительно превышает скорость движения крови по сосудам, нервные импульсы всегда имеют точную направленность к определенным клеткам, тканям, органам. Примером нервной регуляции могут служить различные рефлексы: коленный, зрачковый, чихательный, глотательный, ориентировочный и другие.

В целостном организме существует" единая нейрогуморальная регуляция функций. Например, дыхание регулируется дыхательным центром, расположенным в продолговатом мозге. При возбуждении дыхательного центра происходит вдох, при торможении - выдох. Возбуждение дыхательного центра происходит как нервным (рефлекторным), так и гуморальным путем. Специфическим химическим раздражителем дыхательного центра является СО: Повышение содержания СО2 в крови сопровождается возбуждением дыхательного центра (наступает вдох), понижение - его торможением (наступает выдох).

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом. Оно поддерживается непрерывной работой систем органов кровообращения, дыхания, пищеварения, выделения и др. Благодаря этому в организме происходит саморегуляция физиологических функций, включающаяся всякий раз, когда происходит отклонение от определенного постоянного уровня какого-либо жизненно важного фактора внешней или внутренней среды. Например, благодаря механизмам гомеостаза в крови человека непрерывно поддерживается постоянство уровня глюкозы, хлорида натрия, кислотно-щелочного баланса и т.д.

Взаимосвязь организма с окружающей средой осуществляется через обмен веществ и энергии. Обмен веществ (метаболизм) - главная функция живой материи и представляет собой совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека. К основным видам обмена относятся: белковый, липидный, углеводный, минеральный и водный 3. Онтогенез, его возрастные периоды

Процесс индивидуального развития организма от момента зарождения (зачатия) до его смерти называется онтогенезом. Выделяют следующие периоды жизни человека (по Н.П. Гундобину, 1982):

1. Новорожденный (1-30 дней);

2. Грудной возраст (30 дней - 1 год);

3. Раннее детство (1-3 года);

4. Первое детство (4 - 7 лет);

5. Второе детство (8-12 лет мальчики, 8-11 лет девочки);

6. Подростковый возраст (13-16 лет мальчики, 12-15 лет девочки);

7. Юношеский возраст (17-21 год юноши, 16-20 лет девушки):

8. Зрелый возраст: 1 период (22-35 лет мужчины, 21-35 лет женщины); II период (36-60 лет мужчины, 36-55 лет женщины);

9. Пожилой возраст (61-74 года мужчины, 56-74 года женщины);

10.Старческий возраст (75-90 лет);

11. Долгожители (90 лет и выше).

1. Итак, рассмотрение всех разделов и подразделов главы, посвященной организму человека, позволяет нам убедиться, что человеческий организм -это универсальная единая целостная биологическая система, адекватно реагирующая на различные изменения как в самом организме, так и в окружающей его природной, техногенной и социальной среде.

В ходе этого урока мы ознакомимся с уровнями организации нашего организма и его системами органов.

Тема: Общий обзор организма человека

Урок: Системы органов в организме. Уровни организации

Наш организм. Это определение кажется настолько привычным и понятным, что мы редко задумываемся над его сущностью. И на вопрос: «что же это все-таки такое?» многие могут затрудниться ответить.

Организм - это определенный комплекс или система, реагирующая как единое целое на различные изменения внешней среды. Эта система относительно стабильна, несмотря на то что состоит из многих органов. Органы в свою очередь состоят из тканей, ткани - из клеток, клетки - из молекул.

Молекулы, клетки, ткани, органы, системы органов - все эти этажи, или разные уровни живого, объединены в организме человека в единое и неразделимое целое.

Живые организмы построены из особых химических соединений - органических веществ (белков, жиров, углеводов, нуклеиновых кислот). Они входят в состав любой живой клетки. Эти крупные молекулы играют роль строительных блоков, которые создают сложные комплексы. Вещества клетки расположенные не хаотично, а образуют упорядоченные структуры - органоиды, которые обеспечивают процессы жизнедеятельности клетки. Организм человека - многоклеточное государство. Клетки тела человека неодинаковы, отличаются своей специализацией. Клетки одной специальности объединяются в группы. Вместе с межклеточным веществом они образуют ткани. Из нескольких тканей складываются органы. Органы, выполняющие единую функцию и имеющие общий план строения и развития, объединятся в системы органов. Все системы органов взаимосвязаны и составляют единый организм.

В организме человека выделяют 10 основных систем органов.

Покровная система - состоит из кожи и слизистых оболочек, выстилающих полости внутренних органов, дыхательных путей, пищеварительного тракта. Функция этой системы защита организма от механических повреждений, высыхания, колебания температур, проникновения болезнетворных бактерий.

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа - с. 49, задания и вопрос 1.

2. Что входит в мочевыделительную систему?

3. Что входит в пищеварительную систему?

4. Подготовьте реферат об одной из систем органов.

Для каждого организма характерна определенная организация его структур. Выделяют шесть уровней организации человеческого организма: 1) молекулярный; 2) клеточный; 3) тканевой; 4) органный; 5) системный; 6) организменный.

Молекулярный уровень организации. Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул (биополимеров): нуклеиновых кислот, белков, жиров (липидов), полисахаридов, витаминов, ферментов и других органических веществ. Молекулы белка, в свою очередь, расщепляются в организме на молекулы мономеры - аминокислоты, жиры - на молекулы глицерина и жирных кислот, углеводы - на молекулы глюкозы и т.д. С молекулярного уровня начинаются важнейшие процессы жизнедеятельности организма. Петленко В.П. Валеология человека: Здоровье - любовь - красота. В 2-х книгах, 5 томах. 2-е изд. СПб., 1998.

Клеточный уровень организации. Клетка - элементарная структурная, функциональная и генетическая единица многоклеточного организма. В теле человека насчитывают приблизительно 1014 клеток. Клетки сложного организма специализированы.

Каждая клетка имеет клеточную мембрану, цитоплазму и ядро. Мембрана ограничивает внутреннюю среду клетки, защищает ее от повреждений, регулирует обмен веществ между клеткой и средой, обеспечивает взаимосвязь с другими клетками. Цитоплазма - внутренняя полужидкая среда клетки, в которой находятся органоиды клетки, в том числе и ядро, которое выполняет функции хранения и передачи наследственной информации, регуляции синтеза белка; деление ядра лежит в основе размножения клеток.

Тканевой уровень организации. Ткани - это группы клеток и межклеточного вещества, объединенные общим строением, функцией и происхождением. Различают четыре основные группы тканей: эпителиальная, соединительная, мышечная и нервная.

Эпителиальная (пограничная) ткань находится на поверхностях, граничащих с внешней средой, и выстилает изнутри стенки полых органов, кровеносных сосудов, входит в состав желез организма. Эпителий обладает высокой способностью к восстановлению (регенерации), служит материалом для волос, ногтей, эмали зубов.

Соединительные ткани (ткани внутренней среды) выполняют питательную, транспортную и защитную (кровь, лимфа), а также опорную (сухожилия, хрящи, костная ткань) функции. Разновидностью соединительной ткани является жировая.

Мышечная ткань делится на три вида:

Поперечнополосатую (скелетные мышцы, мышцы языка, глотки, гортани);

Гладкую (образует стенки внутренних органов);

Сердечную (как и скелетная она имеет поперечнополосатое строение, но подобно гладкой мускулатуре сокращается непроизвольно).

Нервная ткань, состоящая из нервных клеток (нейронов), участвует в проведении нервного импульса от различных органов и тканей в центральную нервную систему и обратно. Байер К., Шейнберг Л. Здоровый образ жизни. М., 1997.

Органный уровень организации. Различные ткани, соединяясь между собой, образуют органы: сердце, почки, легкие, головной мозг, спинной мозг, мышца, мочевой пузырь, матка, грудная железа, желудок, глаз, ухо и т.д. Орган занимает постоянное положение, имеет определенное строение, форму и функции. Органы, сходные по своему строению, функции и развитию, объединяются в системы органов.

Системный уровень организации. Совокупность органов, участвующих в выполнении какого-либо сложного акта деятельности, образующих анатомические и функциональные объединения - системы органов. Различают девять основных систем организма.

1. Система органов движения или опорно-двигательный аппарат объединяет все кости (скелет), их соединения (суставы, связки) и скелетные мышцы. Благодаря этой системе организм передвигается во внешней среде; кости скелета защищают внутренние органы от механических повреждений (череп - защищает мозг, грудная клетка - сердце и легкие). Брехман И.И. Валеология - наука о здоровье. М., 1990.

2. Пищеварительная система объединяет органы, выполняющие функции приема пищи, ее механической и химической переработки, всасывания питательных веществ в кровь и лимфу и выведения не переваренных частей пищи. Пищеварительная система состоит из ротовой полости, глотки, пищевода, желудка, тонкого и толстого кишечника. К пищеварительной системе относятся слюнные железы, печень и поджелудочная железа.

3. Дыхательная система осуществляет потребление организмом кислорода и выделение углекислого газа, т.е. функцию газообмена между организмом и внешней средой. К системе органов дыхания относятся носовая полость, гортань, трахея, бронхи и легкие.

4. Мочевыделительная система выполняет функцию выделения из организма конечных продуктов обмена и функцию поддержания постоянства внутренней среды организма (гомеостаза), в частности водно-солевого баланса. К мочевыделительной системе относятся почки, мочевой пузырь, мочеточники и мочеиспускательный канал.

5. Половая система объединяет органы размножения и выполняет функцию продления рода человеческого. Различают мужскую и женскую половые системы, которые включают наружные и внутренние половые органы (гонады).

К мужским половым органам относятся наружные (половой член, мошонка) и внутренние (яички с придатками, семявыносящие и семявыбрасывающие протоки, семенные пузырьки, предстательная и куперовы железы). Яички - парные мужские половые железы, вырабатывающие мужские половые клетки (сперматозоиды) и выделяющие в кровь мужские половые гормоны - андрогены. Процесс роста и развития мужских половых клеток называется сперматогенезом.

К женским половым органам относятся наружные (большие и малые половые губы, клитор) и внутренние (яичники, маточные трубы, матка, влагалище). Матка полый мышечный орган, предназначенный для вынашивания плода. Ее внутренний слой (эндометрий) выстлан слизистым эпителием, который обновляется в каждом менструальном цикле. Яичник - парная женская половая железа, в которой происходит развитие и созревание женских половых клеток (яйцеклеток), а также образование женских половых гормонов - эстрогенов и прогестерона. Процесс выхода созревшей яйцеклетки из яичника называется овуляцией. Делль Р.А., Афанасьева Р.Ф., Чубарова З.С. Гигиена одежды. М.,1991.

6. Эндокринная система состоит из желез внутренней секреции, к которым относятся гипофиз, эпифиз, вилочковая железа, щитовидная, поджелудочная, паращитовидная, половые железы, надпочечники. Они вырабатывают особые активные вещества (гормоны), которые непосредственно всасываются в кровь. Гормоны разносятся кровью по всему организму и оказывают регулирующее влияние на различные функции, прежде всего на обмен веществ, активность генов, процессы онтогенетического развития, дифференцировку тканей, формирование пола, размножение, тонус коры головного мозга и т.д..

7. Сердечнососудистая система (ССС) обеспечивает непрерывное движение крови в организме (кровообращение), благодаря чему осуществляются транспортные функции крови: доставка тканям кислорода, питательных веществ и гормонов и удаление из тканей веществ, образующихся в результате процессов обмена. ССС включает сердце, кровеносные (артерии, вены и капилляры) и лимфатические сосуды. ССС играет важную роль в интеграции организма в единое целое. Через кровь и лимфу осуществляется связь между органами.

8. Система органов чувств объединяет органы зрения, слуха, обоняния, вкуса и осязания. Они воспринимают информацию внешней среды, играют важную роль в обмене информацией между организмом и средой.

9. Нервная система играет ведущую роль в объединении организма в единое целое, регулирует деятельность всех внутренних органов и систем органов. Она осуществляет связь организма с окружающей внешней средой на основе условных и безусловных рефлексов, обеспечивая приспособление к изменяющимся условиям жизни, а также осуществляет психическую деятельность человека, возникающую на основе физиологических процессов ощущения, восприятия и мышления. Кавриго Н.М. Валеология: системный подход. Ижевск, 1998.

Нервная система включает головной и спинной мозг, отходящие от них нервы и все их разветвления. Головной и спинной мозг образуют центральную нервную систему (ЦНС). Высшим отделом ЦНС является кора головного мозга. Все нервы, отходящие от головного и спинного мозга, составляют периферическую нервную систему. Деятельность спинного мозга и периферической нервной системы регулируется вышележащими отделами ЦНС, т.е. головным мозгом.

Головной мозг расположен в черепе. В нем находятся нервные центры, обеспечивающие важнейшие функции организма и психическую деятельность человека. Масса головного мозга мужчин в среднем составляет 1400 г, а женщин - 1300 г. Эти различия отражают не умственную способность, а соотношение массы мозга к массе тела.

В головном мозгу различают большие полушария и ствол мозга. В стволе мозга находятся центры дыхания, сердечной деятельности, пищеварения, рвоты, координации движений и регуляции тонуса мышц, регуляции ощущений органами чувств и т.д. Это центры безусловных рефлексов - врожденных ответных реакций организма, обеспечивающих важные жизненные функции организма: дыхание, сердцебиение, пищеварение, терморегуляция, поддержание тонуса мышц.

Большие полушария (левое и правое) состоят из серого и белого вещества. Серое вещество, состоящее из тел нервных клеток, образует кору головного мозга толщиной около 3-4 мм. Белое вещество, образованное отростками нервных клеток, расположено под корой. Между правым и левым полушариями головного мозга существует межполушарная асимметрия. Это означает, что функции обоих полушарий не совсем одинаковы. Например, у правшей (люди, у которых главная действующая рука правая) центр речи находится в левом полушарии. Левое полушарие у правшей является главным нервным субстратом человеческого сознания и называется доминантным. Самойлов Н.Н., Стратиенко Е.Н. Особенности строения и функций мужских и женских половых органов. Брянск, 1998.

Лобные доли больших полушарий у человека - самые большие по площади участки коры (у животных они отсутствуют, кроме шимпанзе). Одна из функций лобной доли состоит в управлении врожденными поведенческими реакциями при помощи накопленного опыта. Для больных с пораженными лобными долями коры характерна импульсивность, несдержанность, раздражительность и другие проявления психической неустойчивости. Такие больные часто становятся грубыми, нетактичными, хотя интеллект у них сохраняется, они часто вступают в конфликт с другими людьми.

Кора головного мозга оказывает влияние на все функции организма и обеспечивает связь организма с внешней средой, обусловливая высшую нервную деятельность организма (психическую деятельность, мышление, память, речь и т.д.). В коре больших полушарий находятся центры условных рефлексов. Условные рефлексы - это приобретенные в процессе обучения знания, в течение жизни - навыки и умения. Если при повреждающих воздействиях погибают клетки коры головного мозга, то человек полностью или частично лишается знаний, умений и навыков, полученных им ранее. Такое воздействие возможно при клинической смерти, когда клетки коры головного мозга погибают от недостатка кислорода. Память имеет огромное значение в жизни человека. Можно лишь приблизительно оценить информационную емкость человеческого мозга. Общая информационная емкость головного мозга человека равна примерно 3х108 бит (бит - единица информации). Из всей информации, окружающей человека, в долговременную память поступает лишь 1%.

Уровень целостного организма. Организм человека функционирует как единое целое и представляет собой саморегулирующуюся систему. Взаимосвязанная, согласованная работа всех органов и физиологических систем обеспечивается гуморальной и нервной регуляцией. Семенов Э.А. Анатомия и физиология человека. М., 1997.

Нервная регуляция , координирующее влияние нервной системы (НС) на клетки, ткани и органы, приводящее их деятельность в соответствие с потребностями организма и изменениями окружающей среды; один из основных механизмов саморегуляции функций. Многоклеточный организм в своих жизненных проявлениях (рост, развитие, реакции на внешние воздействия и т.п.) выступает как единое целое. Эта целостность обеспечивается рядом регуляторных механизмов, среди которых ведущее значение у животных приобрела Н. р. Вследствие Н. р. деятельность клеток и органов может инициироваться, прекращаться, усиливаться, ослабляться; могут меняться функциональное и биохимическое состояние клеток и органов, особенности их строения. У многоклеточных, не имеющих НС (растения, зародыши животных, губки), упорядоченность функций обеспечивается межклеточными взаимодействиями - ионными, метаболическими и др

Гуморальная регуляция, координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками, органами и тканями в процессе их жизнедеятельности. У высокоразвитых животных и человека Г. р. подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции.

Гомеостаз, гомеостазис (от гомео... и греч. stásis - состояние, неподвижность), в физиологии, относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма человека, животных и растений

2..Онтогенез (от греч. ón, род. падеж óntos - сущее и...генез), индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост, т. е. увеличение массы тела, его размеров, дифференцировку.

Возрастная периодизация - периодизация этапов в жизни человека и определения возрастных границ этих этапов, принятая в обществе система возрастной стратификации.

. Неравномерность и непрерывность роста и развития . Жизнь ребенка - это непрерывный процесс развития. Первые шаги и дальнейшее совершенствование двигательной функции, первые слова ребенка и развитие речевой функции, превращения ребенка в подростка в период полового созревания, развитие центральной нервной системы, осложнения рефлекторной деятельности - это примеры изменений в организме ребенка.

Характерной особенностью процесса роста детского организма является его неравномерность и волнообразность. Периоды усиленного роста меняются некоторым его замедлением. Наибольшей интенсивностью рост ребенка отмечается в первый год жизни и в период полового созревания. Первоначальный рост (рост при рождении) удваивается до 5 лет и утраивается до 15 лет. В младшем школьном возрасте длина тела увеличивается на 4-5см, а в период полового созревания на 6-8 см в год. От периода рождения и до достижения зрелого возраста длина тела увеличивается в 3,5 раза, длина туловища - в 3 раза, длина руки -в 4 раза, длина ноги - в 5 раз.

3.Возраст - продолжительность периода от момента рождения живого организма до настоящего или любого другого определённого момента времени.

Обычно под словом «возраст» понимается календарный возраст (паспортный возраст, хронологический возраст), при котором не учитываются факторы развития организма.

Биологический возраст, или Возраст развития - понятие, отражающее степень морфологического и физиологического развития организма. Введение понятия «биологический возраст» объясняется тем, что календарный (паспортный, хронологический) возраст не является достаточным критерием состояния здоровья и трудоспособности стареющего человека.

Среди сверстников по хронологическому возрасту обычно существуют значительные различия по темпам возрастных изменений. Расхождения между хронологическим и биологическим возрастом, позволяющие оценить интенсивность старения и функциональные возможности индивида, неоднозначны в разные фазы процесса старения. Самые высокие скорости возрастных сдвигов отмечаются у долгожителей, в более молодых группах они незначительны.

Биологический возраст определяется совокупностью обменных, структурных, функциональных, регуляторных особенностей и приспособительных возможностей организма. Оценка состояния здоровья методом определения биологического возраста отражает влияние на организм внешних условий и наличие (отсутствие) патологических изменений.

Биологический возраст, помимо наследственности, в большой степени зависит от условий среды и образа жизни. Поэтому во второй половине жизни люди одного хронологического возраста могут особенно сильно различаться по морфо-функциональному статусу, то есть биологическому возрасту. Моложе своего возраста обычно оказываются те из них, у которых благоприятный повседневный образ жизни сочетается с положительной наследственностью.

Основные проявления биологического возраста при старении – нарушения важнейших жизненных функций и сужение диапазона адаптации, возникновение болезней и увеличение вероятности смерти или снижение продолжительности предстоящей жизни. Каждое из них отражает течение биологического времени и связанное с ним увеличение биологического возраста.

Основными критериями биологического возраста считаются:

1) зрелость, оцениваемая по степени развития вторичных половых признаков;

2) скелетная зрелость (порядок и сроки окостенения скелета);

3) зубная зрелость (сроки прорезывания молочных и постоянных зубов, стертость зубов);

4) показатели зрелости отдельных физиологических систем организма на основании возрастных изменений микроструктур различных органов;

5) морфологическая и психологическая зрелость.

Морфологическая зрелость оценивается на основании развития опорно-двигательного аппарата - мышечной силы, статической выносливости, частоты и координации движений.

С морфологической и физиологической зрелостью тесно связана школьная зрелость, под которой подразумевают степень психофизиологической и морфологической зрелости, достаточную для начала школьного обучения.

Оценка морфологической зрелости основана на изменении пропорций тела, происходящем от того, что замедляется рост головы и шеи, но ускоряется рост конечностей

Акселера́ция или акцелерация (от лат. acceleratio - ускорение) - ускоренное развитие живого организма. Обычно используется для описания ускоренного физиологического развития человека, наблюдаемого в последние 150 лет, но в принципе термин применим и к другим живым организмам.

Ретардация (медицина ) - более поздняя закладка органа и замедленное его развитие у потомков по сравнению с предками. Зависит от начала функционирования органа и, следовательно, от условий среды, в которых проходит индивидуальное развитие организма - его онтогенез.

Причины акселерации. До настоящего времени не сформировано единой общепринятой точки зрения на происхождение процесса акселерации, хотя выдвинуто немало гипотез и предположений.

Так, большинство ученых считают определяющим фактором во всех сдвигах развития изменения в питании. Они связывают акселерацию с увеличением содержания в пище полноценных белков и натуральных жиров, а также с более регулярным потреблением овощей и фруктов в течение года, усиленной витаминизацией организма матери и ребенка.

Существует гелиогенная теория акселерации. В ней немаловажная роль отводится воздействию на ребенка солнечных лучей: считается, что дети в настоящее время больше подвергаются воздействию солнечной радиации. Однако этот довод кажется недостаточно убедительным, так как процесс акселерации в северных странах идет не меньшими темпами, чем в южных.

Имеется точка зрения о связи акселерации с изменением климата: считается, что влажный и теплый воздух замедляет процесс роста и развития, а прохладный сухой климат способствует потере тепла организмом, что якобы и стимулирует рост. Кроме того, есть данные и о стимулирующем воздействии на организм малых доз ионизирующих излучений.

Некоторые ученые в числе важных причин акселерации называют обусловленное достижениями медицины общее снижение заболеваемости в младенчестве и детстве вкупе с улучшением питания. Очевидно также, что появлению многих новых факторов воздействия на человека способствуют развитие науки и технический прогресс, причем свойства этих факторов и особенности их воздействия на организм еще мало изучены (речь идет о химических веществах, используемых в промышленности, сельском хозяйстве, быту, новых лекарственных средствах и др.). Некоторые исследователи значительную роль в акселерации отводят новым формам и методам воспитания и образования, спорту, физкультуре.

Связывают акселерацию и с негативным воздействием темпов современной городской жизни. Это и обильное искусственное освещение (включая рекламу); стимулирующее воздействие электромагнитных колебаний, возникающих при работе теле– и радиостанций; городской шум, движение транспорта; влияние радио, кино и телевидения на раннее интеллектуальное, особенно сексуальное, развитие.

Технический прогресс в экономически развитых странах привел к концентрации населения в больших городах. Развитие транспорта и связи сократило расстояния, ранее казавшиеся очень значительными. Усилилась миграция населения. Расширилась география брака, рушится генетическая изоляция. Это создает благоприятную почву для изменения наследственности. Молодое поколение становится выше ростом и созревает раньше своих родителей.

Акселерация является предметом изучения не только биологии и медицины, но и педагогики, психологии и социологии. Так, специалисты отмечают некоторый разрыв между биологической и социальной зрелостью молодых людей, при этом первая наступает раньше. В связи с этим встает ряд вопросов перед медицинской теорией и практикой. Например, появилась необходимость в определении новых норм трудовой и физической нагрузки, питания, нормативов детской одежды, обуви, мебели и др.

Одним из важных следствий акселерации становится то, что дети начинают раньше говорить, проявлять реакцию на звук, цвет, свет, держать головку, сидеть, стоять и ходить, чем их сверстники в недалеком прошлом. Акселерация не обошла стороной и вегетативную нервную систему - появляется потливость, тахикардия, бледнеет лицо и т.д.

Параллельно с этим происходит усиление деятельности половых желез

.Сенситивными периодами называют периоды особой восприимчивости детей к тем или иным способам и видам деятельности; к способам эмоционального реагирования, поведения вообще –вплоть до того, что каждая черта характера наиболее интенсивно развивается на основе внутреннего импульса в течении некоторого узкого промежутка времени. В соответствии с космическим планом развития сенситивные периоды служат тому, чтобы ребенок имел принципиальную возможность приобрести внутренне необходимые ему знания, умения, способы поведения и т.д.

Человеку никогда более так легко не удается овладеть определенными знаниями, так радостно учиться, как в соответствующий сенситивный период.

Сенситивные периоды длятся определенное время и проходят безвозвратно – независимо от того, удалось ли ребенку полностью воспользоваться их условиями для развития каких-либо своих способностей.

Взрослый извне не может повлиять на время возникновения и длительность сенситивных периодов, но имеет, по крайней мере, следующие возможности:

Знать эти периоды, их особенности наблюдать проявления, характерные для наиболее интенсивных этапов протекания определенного сенситивного периода, что необходимо для точной оценки уровня развития ребенка в настоящий момент;

Предвидеть наступление следующего сенситивного периода и подготовить соответствующую окружающую среду, чтобы у ребенка было то, в чем он особенно нуждается в данный момент. В этом смысле среда Монтессори-школы является оптимальным решением проблемы, потому что в ней всегда есть все, что ему может понадобиться для реализации этих познавательных потребностей.

Эти периоды универсальны, то есть возникают в ходе развития всех детей.

Они индивидуальны по времени возникновения и длительности у конкретного ребенка. Поэтому выглядит, мягко говоря, странной идея фронтального подхода к обучению детей (особенно в возрасте до 6 лет): во-первых, биологический возраст 5 лет не означает, что ребенок психологически соответствует этому возрасту; во-вторых, среднестатистические сроки начала и динамика протекания какого-либо сенситивного периода совершенно не гарантируют, что каждый ребенок проходит его именно так.

Отсюда следует необходимость динамической диагностики развития детей, определения индивидуальных особенностей развития ребенка в определенный период времени.

Протекание каждого сенситивного периода характеризуется более или менее медленным началом, которое довольно трудно заметить, если не предполагать возможность его наступления и не работать с ребенком в «зоне его ближайшего развития»; затем наступает этап наибольшей интенсивности, который наблюдать довольно просто; и более или менее медленный спад интенсивности.

Некоторые сенситивные периоды протекают примерно в одно и тоже время у разных детей, но имеют наивысшую интенсивность в разные моменты.

«Критические периоды» - что это значит? Беременность - одна из форм сосуществования двух организмов, двух миров, сливающихся в единое целое: женщины и развивающегося в её утробе дитя.

Успешное течение беременности обеспечивается адаптацией мамы и будущего ребенка друг к другу. Всё дело в том, что процессы этой адаптации очень сложные и в определенные моменты функционируют чрезвычайно напряженно.

Критические периоды беременности, или критические периоды в развитии эмбриона и плода - это те периоды, когда чувствительность их повышается, а адаптационные возможности снижаются и зародыш становится особенно легко уязвимым.

Эти периоды характеризуются активными клеточными и тканевыми процессами и значительным повышением обмена веществ.

Действие неблагоприятных факторов окружающей среды:

А) недостаток кислорода (гипоксия),

Б) переохлаждение,

В) перегревание,

Г) врачебные препараты,

Д) токсины,

Е) продукты химического производства,

Ж) возбудители вирусных и бактериальных инфекций и т.д.,

в зависимости от стадии развития зародыша может оказаться крайне опасным и даже губительным для него.

асле́дственность - способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.

Наследственностью называется передача родительских признаков детям. Некоторые наследственные качества (форма носа, цвет волос, глаз, очертания лица, музыкальный слух, певческий голос и др.) не требуют для своей фиксации использования каких-либо приборов, другие, связанные с цитоплазмой и ядерной ДНК (обменом веществ, группой крови, полноценностью набора хромосом и др.), предполагают проведение достаточно сложных исследований.

Рост и развитие ребенка зависят от полученных наследственных задатков, однако велика роль и окружающей среды. Принято различать благоприятную и неблагоприятную (или отягощенную) наследственность. Задатки, обеспечивающие гармоничное развитие способностей и личности ребенка, относятся к благоприятной наследственности. Если для развития этих задатков не будут созданы соответствующие условия, то они угасают, не достигая уровня развития одаренности родителей. Например, не развивается певческий голос, музыкальный слух, способности к рисованию и т. д.

Отягощенная наследственность не всегда может обеспечить нормальное развитие ребенка даже в хорошей среде воспитания. Обычно она является причиной аномалий (отклонений от нормы) и даже уродств, а в ряде случаев и причиной длительной болезни и смерти. Помимо этого, причиной аномалий у детей может быть алкоголизм родителей и вредность их профессии (например, работа, связанная с радиоактивными веществами, ядохимикатами, вибрацией).

Однако наследственность, особенно неблагоприятную, не следует считать чем-то неизбежным. В некоторых случаях она поддается коррекции и управлению. Например, разработаны способы лечения гемофилии – введение специфического белка крови.

Рождения детей с неблагоприятной наследственностью можно избежать, проконсультировавшись у врачей-генетиков. В частности, такие консультации способствуют предупреждению близкородственных браков, являющихся причиной рождения аномальных детей.

Своевременное выявление у детей унаследованных признаков позволяет направить одних детей в спецшколы для одаренных, других – во вспомогательные школы. Дети с умственными и физическими аномалиями (умственно отсталые, глухие, слепые) во вспомогательных школах приобщаются к общественно полезному труду, овладевают грамотой и повышают свое интеллектуальное развитие. Огромная заслуга в исправлении неблагоприятной наследственности у детей принадлежит олигофрено-, сурдо– и тифлопедагогике.

Квалифицированные педагоги в спецшколах совершенствуют математические, музыкальные и другие задатки детей, что связано с огромным трудом по их развитию. Педагог должен знать, что родители часто видят у своего ребенка необыкновенные способности, хотя на самом деле он может иметь весьма скромные задатки. Поэтому очень важно вовремя подсказать родителям, как развивать в ребенке ту склонность, которая выявляется у него и которую он, может быть, унаследовал от дедов, а не от родителей. Такое проявление способностей связано с особенностью наследственности: ее длительной устойчивостью, когда признаки передаются на протяжении многих поколений и не всегда проявляются в первых поколениях (это так называемая рецессивная наследственность).

Взаимоотношения организма со средой. Основоположник русской физиологии И.М. Сеченов писал, что «организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него». Следовательно, вне природы и социальной среды, по сути дела, нет и человека.

И.П. Павлов, развивая это положение, пришел к выводу, что о человеке необходимо говорить как о целостном организме, который тесно взаимосвязан с внешней средой и существует только до тех пор, пока сохраняется уравновешенное состояние его и окружающей среды. В связи с этим все рефлексы рассматривались Павловым как реакции постоянного приспособления к внешнему миру (например, приспособление человека к разным климатическим условиям или разной среде обитания).

Таким образом, развитие человека нельзя адекватно оценить без учета той среды, в которой он живет, воспитывается, работает, без учета тех, с кем он общается, а функции его организма – без учета гигиенических требований, предъявляемых к рабочему месту, домашней обстановке, без учета взаимоотношений человека с растениями, животными и др.

В основе наследственности лежит способность всех живых о рганизмов накапливать, хранить и передавать потомству наследственную информацию. Эта одна из важнейших качественных особенностей живой материи связана с нуклеиновыми кислотами - дезоксирибонуклеино-вой (ДНК) и рибонуклеиновой (РНК). Ведущее значение принадлежит ДНК - самой длинной молекуле живых организмов, сосредоточенной в ядрах клеток и представляющей собой ее наследственный аппарат. Большая длина молекулы ДНК дает возможность «записать» на ней, как на телеграфной ленте, все основные свойства будущего организма и программу его развития. Такая «запись» осуществляется с помощью специального «нуклеинового языка», или «нуклеинового кода», сущностью которого является изменение порядка следования четырех химических соединений, входящих в состав ДНК Образно говоря, «нуклеиновый язык» состоит из четырех букв, из которых строятся отдельные слова и целые предложения «нуклеинового языка».

На такой нуклеиновой «ленте» можно выделить отдельные самостоятельные участки, включающие в себя описание программы развития одного признака. Их называют генами.

Каждая молекула ДНК включает в себя сотни генов и представляет собой программу развития многих признаков и свойств организма. Объединяясь с особыми белками и некоторыми другими веществами, молекулы ДНК образуют в ядре специальные образования - так называемые хромосомы.

Число хромосом и их форма строго постоянны для каждого вида растительных и животных организмов. У человека в ядрах его соматических клеток содержится 46 хромосом, а в ядрах половых клеток их число вдвое меньше - 23. Однако в процессе оплодотворения, когда происходит слияние женской половой клетки (яйцеклетка) с мужской (сперматозоид), хромосом вновь становится 46. Такой двойной набор хромосом называют диплоидным, а одинарный набор хромосом половых клеток - гаплоидным.

Все 46 хромосом можно разбить на 23 пары, из них 22 относительно близки по форме и генному составу. Эти хромосомы называют гомологичными (от греч. гомология - согласие). 23-я пара - половые хромосомы X и Y. Абсолютного сходства между гомологичными хромосомами нет. В каждой гомологичной хромосоме всегда содержится большое число генов, контролирующих развитие различных признаков. Например, в одной хромосоме может находиться ген, обеспечивающий карий цвет глаз, а в другой - голубой.

Эти маленькие отличия в генном составе гомологичных хромосом имеют большое значение и лежат в основе изменчивости организмов - свойства потомства отличаться рядом признаков от своих родителей. Действительно, в процессе образования половых клеток гомологичные хромосомы расходятся в разные клетки, а в результате оплодотворения они объединяются в новые пары. Но теперь одна гомологичная хромосома - отцовская, а другая- материнская.

Значительные изменения генного состава хромосом могут осуществляться и в результате прямого обмена между гомологичными хромосомами участками, содержащими десятки генов.

Наконец, наибольшее значение в изменчивости организмов имеют мутации - резкие изменения какого-либо признака, связанного с изменением хромосомного или генного состава организма.

Хромосомные и генные мутации у человека относительно хорошо изучены, так как они лежат в основе наследственных болезней. Принято различать хромосомные и генные болезни. Первые связаны с изменением хромосомного аппарата человека, вторые - генного. Так, одно из тяжелейших наследственных заболеваний - синдром Дауна, связан с нарушением нормального числа хромосом.

Примером генного заболевания может быть гемофилия, при которой нарушается свертывание крови. В результате небольшой порез пальца может привести к смерти, так как кровотечение почти невозможно остановить.

Мутации не всегда вызывают заболевания и даже, напротив, бывают полезны организму. Без этого было бы невозможно постоянное совершенствование живой природы в процессе эволюции и гармоничное взаимодействие организмов с внешней средой.

Возникновение мутаций связано с влиянием внешней среды и происходит наиболее часто при воздействии на организм сверхсильных факторов (различные виды радиации, химические вещества, болезни и др.). У человека возникновение мутаций обусловлено также его возрастом, полом, характером деятельности и т. д. Генетиками подсчитано, что даже в идеальных условиях у каждого человека в течение его жизни обязательно происходит мутация одного гена.

Механизм передачи наследственной информации в общем виде включает три основные стадии: 1) воспроизведение заключенной в ДНК генетической информации с помощью матричного механизма ее удвоения - репликация; 2) перенос этой информации в молекулу РНК - транскрипция; 3) синтез на основе этой информации белковых молекул, в том числе ферментов - трансляция.

Рассмотрим эти процессы более детально. Остановимся прежде всего на строении ДНК и РНК и их роли в передаче наследственной информации, которая демонстрируется наиболее наглядно на примере контроля ДНК-за синтезом в клетках белковых молекул.

Механизмы передачи генетической информации – репликация, транскрипция, трансляция (биосинтез белка)

Передача генетической информации осуществляется с помощью трех механизмов: репликации, транскрипции, трансляции.

Репликация (досл. «удвоение» ДНК) – это многоэтапный, упорядоченный процесс, идущий по матрице ДНК в направлении 5`à3`, в результате которого из каждой молекулы ДНК образуется 2 абсолютно идентичные, «дочерние» ДНК. С репликации ДНК начинается процесс деления клетки. Репликация ДНК начинается на многих участках (репликативных единицах) и идет одновременно по обеим цепям.

Репликация идет полуконсервативным путем: у каждой дочерней ДНК одна из цепей – исходная (материнская), а вторая вновь образованная (дочерняя) (опыты Мезельсона и Сталя). В процессе репликации участвует около 30 белков и ферментов, образующих репликативный комплекс: расплетающие ферменты (хеликаза и ДНК-топоизомеразы), ДНК-полимеразы, ДНК-лигазы, ДНК-зависимые РНК-полимеразы.

В геноме человека репликация происходит в течение 9 часов. Это необходимо для образования тетраплоидного генома из диплоидного в реплицирующейся клетке. Для репликации необходимо наличие множественных мест репликации (репликативных единиц – их около 100).

Изменчивостью назы вают свойство организмов приобретать новые признаки, отличающие их от других организмов того же вида.

Изменчивость затрагивает все свойства организмов: черты строения, окраску, физиологию, особенности поведения и пр. В потомстве одной пары животных или растений, выращенных из семян одного плода, невозможно найти двух полностью тождественных особей. Природа изменчивости различна. Дарвин различал две основные формы изменчивости - ненаследственную и наследственную.

Хромосо́мы (др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Феноти́п (от греческого слова phainotip - являю, обнаруживаю) - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, - мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.

Геноти́п - совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.

Онтогенез обусловлен влиянием наследственных факторов и определяется генетической программой, которая складывается в результате взаимодействия родительских генов. Генетическая программа индивидуального развития реализуется в определенных условиях окружающей среды. На различных этапах онтогенеза влияние генетической информации и окружающей среды неодинаково. Так, в первые годы жизни влияние среды оказывается неизмеримо сильнее, чем в более поздние годы.

Основные закономерности наследования признаков. Наследственность человека изучена в настоящее время в значительно меньшей степени, чем механизмы наследования признаков у растительных и животных организмов. Тем не менее уже сегодня получены интересные данные о наследственной обусловленности многих физических признаков человека. Современный уровень генетической науки позволяет также утверждать, что все основные закономерности наследования признаков и законы наследственности, выявленные в экспериментах с растениями и животными, являются справедливыми и для человека.

Например, если молодой человек, у которого в обеих гомологичных хромосомах содержатся гены, обеспечивающие карий цвет глаз (гомозиготный по карему цвету), женится на голубоглазой девушке, у которой в хромосомах также содержатся только гены, обеспечивающие голубой цвет глаз, то их потомство будет наследовать цвет глаз по законам, открытым основателем генетики Г. Менделем еще в 60-е годы прошлого столетия в его опытах с растительными гибридами гороха.

Наследование пола у человека и большинства животных также происходит по общим закономерностям и связано с распределением хромосом, имеющих Х- и К-образ-ную форму (половые хромосомы). В хромосомном наборе женского организма содержится две Х-хромосомы, а в мужском - одна хромосома X и одна У-хромосома (см. рис. 7).

Число подобных примеров может быть бесконечно большим, и нет сомнения, что «генный портрет» человека (генотип) определяет в значительной степени многие его внешние свойства (фенотип). Ниже перечислены некоторые наследственные признаки человека, определяемые доминантными и рецессивными генами (по К- Вилли, 1974). Проявление генного влияния может осуществляться на различных этапах онтогенеза, но большинство фенотипи-ческих признаков определяется еще до рождения. Наконец, и само проявление генов не бывает фатальным, а зависит от факторов внешней среды. Например, тяжелое наследственное заболевание фенилкетонурия не развивается, если ребенок, содержащий в генотипе гены, вызывающие это заболевание, сразу же после рождения начинает получать определенную диету.

Таким образом, генетика располагает убедительными фактами, доказывающими существование как строго обусловленных наследственностью^ признаков (например, уппы крови, гемофилия, цвет волос и глаз, черты лица и многие другие), так и признаков, определяемых в большой степени внешней средой (например, рост и масса человека, сила и ловкость его мышц, склонность к заболеваниям и др.).

Следует отметить, что между генами и признаками не существует прямой связи: развитие одного признака может зависеть от влияния множества генов, а один ген может оказывать влияние на развитие многих признаков. Эта картина еще более усложняется постоянной коррекцией со стороны внешней среды.

Следовательно, наел едет вен н ость _и с реaj^кaKjfcактотж^ развития всегда тесно взаимосвязаны. Нельзя представить себе развитие ребенка без корригирующих влияний среды, так же как оно невозможно без генетически предопределенной программы развития, представляющей синтез исторического опыта всех предшествующих поколений.

Рассмотрим роль наследственности и среды в развитии некоторых физических признаков человека в процессе его пренатального и постнатального развития.

Пренатальное развитие. Формирование органов и функциональных систем ребенка в процессе эмбриогенеза находится под контролем генотипа, но факторы внешней среды играют не последнюю роль. Для зародыша первичной средой является материнский организм. Здесь в специальном органе - матке - зародыш относительно хорошо защищен от многих вредных воздействий и получает через плаценту все необходимое ему для существования. Тем не менее, особенно на начальных этапах развития, многие факторы, влияющие на материнский организм, сказываются и на развитии зародыша (наиболее значительными являются: ионизирующее излучение, заболевания, перенесенные женщиной во время беременности, и многие химические вещества: алкоголь, никотин, антибиотики, гормональные препараты и др.).

Следует отметить, что в пренатальном периоде человека есть критические периоды, когда развивающийся организм особо чувствителен к действию внешних факторов. Выделяют два таких периода. Первый включает начало пренатального развития, его первые три недели. В это время происходит закладка всех важнейших органов, и неблагоприятные воздействия в этот период чаще приводят к гибели зародыша. В течение второго критического периода (с 4-й по 7-ю неделю) происходит дальнейшее развитие всех органов, и вредные внешние воздействия в этот период могут привести к рождению ребенка с различными физическими дефектами (рис. 9).

Важным является тот факт, что одинаковые физические врожденные дефекты могут быть связаны и с повреждением генетических структур, и с действием неблагоприятных внешних факторов в процессе эмбриогенеза. Это хорошее свидетельство того, что среда и наследственность в равной степени ответственны за нормальное развитие ребенка.

Итак, к моменту рождения все органы человека и его физиологические системы, в том числе и нервная система, оказываются в общих чертах сформированными. Естественно, возникает вопрос: являются ли наследственно предопределенными те свойства нервной системы, которые лежат в основе психической деятельности человека, в основе его разума? Существуют ли готовые морфологические «заготовки сознания» так же, как они существуют для низшей нервной деятельности, связанной с регуляцией жизненных процессов нашего тела. Чтобы ответить на эти вопросы, остановимся на следующем, постнатальном этапе развития человека.

Постнатальное развитие ребенка. Прежде всего рассмотрим основные методы, позволяющие изучать удельное значение среды и наследственности в постнатальном развитии детей и подростков.

Проведение подобных экспериментов на растениях является простым и состоит в выделении двух групп организмов, идентичных по генотипу, и помещении этих групп в различные условия существования. Например, одну группу растений (контрольную) выращивают в обычных условиях, другую (экспериментальную) - в затемненном помещении. В результате подобных опытов можно сделать вывод, что образование зеленого хлорофилла растений зависит не только от наследственности, но и от факторов внешней среды (света), так как растения, выросшие в темноте, не будут содержать этот пигмент.

Проведение аналогичных опытов на людях невозможно как с морально-этической стороны, так и с биологической. В мире нет двух людей с одинаковыми генотипами. Но... есть и исключения из правила. Это идентичные, или гомозиготные, близнецы (ИБ), имеющие не только поразительное внешнее сходство, но и почти одинаковые генные «портреты». Рождение идентичных и неидентичных близнецов (НБ) явление нередкое, в среднем из 100 беременностей одна завершается рождением более чем одного ребенка. Близнецы - превосходнейший «материал», подаренный ученым самой природой, поэтому и сам метод называют близнецовым. В чем его сущность?

Допустим, нужно установить, какой фактор несет большую ответственность за физическое развитие и рост ребенка: наследственность или среда? Для этого выделяют близнецовые пары, проводят их морфологическое обследование и изучают образ жизни (обычно близнецы, особенно идентичные, имеют сходные интересы и близкие условия воспитания). На основании проведенных исследований устанавливают коэффициент сходства (конкордантность) между близнецами и делают заключение о роли наследственности или среды в развитии тех или иных качеств. Результаты подобных исследований идентичных и неидентичных близнецов по частоте встречаемости среди них некоторых заболеваний представлены в табл. К сожалению, педагоги проводят пока слабую работу по выявлению одаренных детей, что часто связано с недооценкой детской физиологической и психической индивидуальности, с незнанием элементарной биологии ребенка. Слабую работу по выявлению детской одаренности можно также объяснить еще низким уровнем исследований в этой области и отсутствием точных научных критериев, по которым педагогу нетрудно было бы обнаружить наследственные наклонности ребенка. Существует лишь тесная связь между одаренностью и высоким уровнем возбудимости нервной системы, признаком чего часто является резкая неуравновешенность (психопатичность) ребенка. К таким детям педагог должен относиться особо внимательно. Это необходимо прежде всего с гигиенической стороны, так как неверные действия педагога могут привести к развитию крайних черт характера в патологические. Необходимо это также и для своевременного выявления наследственных задатков и их оптимального развития. Важно помнить, что видимое отсутствие склонностей к учению, внешняя лен-ность и недисциплинированность еще не являются достаточными доказательствами отсутствия способностей. Из истории известно немало доказательств справедливости этого заключения. Создатель теории относительности А. Эйнштейн в детстве не проявлял открытых способностей и только в 9 лет смог пойти в подготовительную школу. Плохо учились в школе А. Гумбольдт (1769-1859) и Л. Пастер (1822-1895), выдающийся английский физик И. Ньютон слыл в школе лентяем и неспособным учеником. Можно полагать, что умелое обращение с ними родителей и педагогов создало в конце концов все необходимые условия для развития талантов. Тем более что важнейшим качеством гениальности является трудолюбие. Великий американский изобретатель Т. Эдисон писал: «Гений-это один процент вдохновения, а на девяносто девять процентов потение». Тот, кто не научится «потеть», никогда не сможет достичь больших успехов в любом виде человеческой деятельности, несмотря на самые выдающиеся наследственные задатки. Кто, как не педагог, должен в первую очередь воспитывать у ребенка трудолюбие - этот важнейший фактор прогрессивного развития личности, главнейшее условие формирования любых способностей.

Таким образом, наследственность лишь дает «сырой материал», а среда осуществляет его основную «переработку». Человек, родившийся даже с самыми благоприятными задатками, но живущий в среде, препятствующей развитию его способностей, останется посредственностью, так что основная ответственность за развитие интеллектуальных возможностей ребенка ложится на воспитателей. Тем не менее роль среды не следует абсолютизировать, нельзя забывать, что «материал», поставляемый наследственностью, не всегда бывает качественным и даже самый талантливый скульптор не сможет из песка изваять скульптуру, точно так же, как глыба мрамора сама по себе не станет произведением искусства.

Почему человек всегда пытался узнать, как работают системы, управляющие его организмом? Видимо, потому, что понимание принципов функционирования и взаимодействия нервной и эндокринной систем - самых сложных из всех известных биологических объектов - представляет несомненный интерес. Кроме того, все психические явления выступают производными физических и химических процессов, происходящих в человеческом теле и прежде всего в нервной и эндокринной системах. Раскрыв их суть, можно более осознанно относиться к использованию ресурсов мозга, лечить болезни, корректировать психические функции и т.п..

Подавляющее большинство современных психологов (не говоря уже о биологах и медиках) исходят из того, что центральная нервная система (ЦНС) в той или иной степени является материальным субстратом психической деятельности. К сожалению, сегодня нейронауки еще далеки от видения полной картины не только принципов, но и частных проявлений работы ЦНС. Недаром один из величайших биологов XX столетия Нобелевский лауреат Ф. Крик пишет, что такие функции мозга человека, как восприятие, сознание, воображение, эмоции, «недоступны пониманию на современном уровне нащих знаний. Для того чтобы постичь эти высшие уровни нервной деятельности, очевидно, хорошо было бы как можно больше узнать о более низких уровнях, особенно доступных прямому эксперименту. Необходимо рассмотреть теории, которые касаются переработки информации в больших и сложных системах, будь то информация, поступающая от органов чувств, или инструкции, посылаемые мышцам и же-лезам, или же поток сигналов, заключающийся в обширной нервной и эндокринной активности между этими двумя крайними членами». Мы не ставим целью решение вопроса об отношении психического к физическому. Они лишь исходят из того очевидного факта, что современный психолог, особенно работающий в прикладных сферах, должен владеть базовыми знаниями в таких областях, как анатомия мозга, нейрофизиология, нейрохимия, физиология поведения, нейроэндокринология.

В настоящее время интерес к психологии как профессии чрезвычайно высок. Кроме различных форм подготовки специалистов-психологов, все более развивается система поствузовского обучения, позволяющая осваивать различные области психологии (например, психотерапию) теми, кто уже имеет высшее образование. Студентам читаются курсы анатомии и физиологии нервной системы, физиологии высшей нервной деятельности, физиологии сенсорных систем, иногда - общей биологии и др. Однако специализированных пособий, в которых учитывалась бы специфика преподавания перечисленных дисциплин будущим психологам, явно недостаточно.

В предлагаемом пособии авторы попытались изложить современные представления о принципах устройства и функционирования двух основных интегрирующих и регулирующих систем организма - нервной и эндокринной. Значительное внимание уделено как отдельным молекулярным регуляторам, так и деятельности клеток и клеточных структур, а также системному уровню, обеспечивающему регуляцию внутренних органов, обучение, изменение эмоционального состояния и т.д..

Задача авторов несколько осложнялась тем, что в учебных заведениях психологического профиля не преподают химию и физику. Поэтому сведения, относящиеся к этим разделам зна-ний, представлены в доступной форме и лишь тогда, когда они необходимы для понимания основ функционирования нервной и эндокринной систем. Химические формулы медиаторов, гормонов и т.п. будут понятны читателям, обладающим соответствующей подготовкой. Те же, для кого восприятие формул затруднительно, вполне могут овладеть материалом, пользуясь лишь текстом учебника. Авторы старались привести как можно больше примеров, позволяющих наглядно представить, в каких областях могут быть использованы специалистом-психологом излагаемые сведения.

Пособие может быть использовано при изучении курсов анатомии и физиологии нервной системы, физиологии ВНД, а также родственных учебных дисциплин (например, общей биологии, зоопсихологии, психофизиологии), которые читаются будущим психологам и студентам некоторых других специальностей (педагоги, биологи, медики и т. п.).

Нервно-гуморальная регуляция функций в организме Понятие координации. Деятельность всех органов и систем организма согласованна. На воздействия из внешней и внутренней среды организм реагирует как единое целое. Объединение деятельности различных систем организма в единое целое (интеграция) и согласование, взаимодействие, ведущее к приспособлению организма к различным условиям среды (координация), связаны с деятельностью центральной нервной системы.

Биологически активные вещества (БАВ) - группа химических соединений, которые оказывают выраженный физиологический эффект в минимальных количествах.

В пище находится большинство из них, например: алкалоиды, гормоны и гормоноподобые соединения, витамины, микроэлементы, биогенные амины, нейромедиаторы. Все они обладают фармакологической активностью, а многие служат ближайшими предшественниками сильнодействующих веществ, относящихся к фармакологии.

БАВ-микронутриенты применяются для лечебно-профилактических целей в составе биологически активных пищевых добавок.

Эндокринные железы (от эндо... и греч. kríno - отделяю, выделяю), железы внутренней секреции, железы животных и человека, не имеющие выводных протоков и выделяющие вырабатываемые ими вещества - гормоны - непосредственно в кровь или лимфу. К Э. ж. относятся щитовидная железа, околощитовидные железы, надпочечники, гипофиз. Половые железы (яичники и семенники), а также поджелудочная железа осуществляют наряду с внутренней и внешнюю секрецию. См. Внутренняя секреция, Железы, ср. Экзокринные железы.

Общие принципы структурно-функциональной организации эндокринных желез:

не имеют выводных протоков, так как выделяют гормоны в кровь;

имеют богатое кровоснабжение;

имеют капилляры фенестрированного или синусоидного типа;

являются органами паренхиматозного типа, в большинстве своем образованы эпителиальной тканью, формирующей тяжи и фолликулы;

в эндокринных органах преобладает паренхима, строма же развита слабее, то есть органы построены экономно;

вырабатывают гормоны - биологически активные вещества, оказывающие выраженные эффекты в малых количествах.

Классификация гормонов:

белки и полипептиды - гормоны гипофиза, гипотоламуса, поджелудочной железы и некоторых других желез;

производные аминокислот - гормоны щитовидной железы (тироксин и трийодтиронин), гормон мозгового вещества надпочечников адреналин, серотонин, вырабатываемый многими эндокринными железами и клетками и другие;

стероиды (производные холестерина) - половые гормоны, гормоны коры надпочечников, витамин D2 (кальцитриол).

Особенности действия гормонов:

дистантность - могут вырабатываться далеко от клеток-мишеней;

специфичность;

избирательность;

высокая активность в малых дозах.

Механизм действия гормонов

Попадя в кровь, гормоны с ее током достигают регулируемых клеток, тканей, органов, которые называются мишенями. Можно выделить два основных механизма действия гормонов:

Первый механизм - гормон связывается на поверхности клеток с комплементарными ему рецепторами и изменяет пространственную ориентацию рецептора. Последние являются трансмембранными белками и состоят из рецепторной и каталитической части. При связывании с гормоном активируется каталитическая субъединица, которая начинает синтез вторичного посредника (мессенджера). Мессенджер активирует целый каскад ферментов, что ведет к изменению внутриклеточных процессов. Например, аденилатциклаза вырабатывает циклический аденозинмонофосфат, регулирующий ряд процессов в клетке. По данному механизму функционируют гормоны белковой природы, молекулы которых гидрофильны и не могут проникать через клеточные мембраны.

Второй механизм - гормон проникает в клетку, связывается с белком-рецептором и вместе с ним попадает в ядро, где изменяет активность соответствующих генов. Это ведет к изменению метаболизма клетки. Эти же гормоны могут действовать на отдельные органеллы, например, митохондрии. По этому механизму действуют жирорастворимые стероидные и тиреоидные гормоны, которые благодаря липотропным свойствам легко проникают внутрь клетки через ее оболочку.

Классификация эндокринных желез по иерархическому принципу:

центральные - гипоталамус, эпифиз и гипофиз. Они осуществляют контроль за деятельностью других (периферических) эндокринных желез;

периферические, которые осуществляют непосредственный контроль за важнейшими функциями организма.

В зависимости от того, находятся ли они под регулирующим действием гипофиза или нет, периферические эндокринные железы делятся на две группы:

1 группа - аденогипофизнезависимые кальцитониноциты щитовидной железы, паращитовидная железа, мозговое вещество надпочечников, островковый аппарат поджелудочной железы, тимус, эндокринные клетки диффузной эндокринной системы;

2 группа - аденогипофиззависимые щитовидная железа, кора надпочечников, гонады.

По уровню структурной организации:

эндокринные органы (щитовидная и паращитовидные железы, надпочечники, гипофиз, эпифиз);

эндокринные отделы или ткани в составе органов, сочетающих эндокринные и неэндокринные функции (гипоталамус, островки Лангерганса поджелудочной железы, ретикулоэпителий и тельца Гассаля в тимуса, клетки Сертоли извитых канальцев яичка и фолликулярный эпителий яичка);

клетки диффузной эндокринной системы.

Гормо́ны (греч. Ορμόνη) (греч. hormao - возбуждаю, побуждаю) - биологически активные сигнальные химические вещества, выделяемые эндокринными железами непосредственно в организме и оказывающие дистанционное сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях - только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.

Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток - как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами - например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слабо растворимы в воде, при транспорте по крови связываются с белками-носителями.

Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле - образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.

Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1 % белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.

Большинство других гормонов характеризуются тремя особенностями:

они растворяются в воде;

не связываются с белками-носителями;

начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.

В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников - цАМФ (циклический аденозинмонофосфат), инозитолтрифосфат, ионы кальция.

Так, в среде, лишенной ионов кальция, или в клетках с недостаточным их количеством действие многих гормонов ослабляется; при применении веществ, увеличивающих внутриклеточную концентрацию кальция, возникают эффекты, идентичные воздействию некоторых гормонов.

Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, как вазопрессин и катехоламины.

Однако есть гормоны, у которых внутриклеточный посредник до сих пор не обнаружен. Из наиболее известных таких гормонов можно назвать инсулин, у которого на роль посредника предлагали цАМФ и цГМФ, а также ионы кальция и даже перекись водорода, но убедительных доказательств в пользу какого-нибудь одного вещества до сих пор нет. Многие исследователи считают, что в таком случае посредниками могут выступать химические соединения, структура которых полностью отличается от структуры уже известных науке посредников.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).

Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды, жиры. Гормоны, синтезом которых занята эндокринная система, обеспечивают наше физическое, половое и умственное созревание, позволяют организму адаптироваться к условиям окружающей среды. Только действию гормонов мы обязаны, к примеру, постоянством содержания глюкозы в крови и других жизненно важных функций. Гормоны имеют различную химическую структуру. Это приводит к тому, что они имеют разные физические свойства.

Гормоны разделяют на водо- и жирорастворимые. Принадлежность к какому-то из этих классов обуславливает их механизм действия. Это объясняется тем, что жирорастворимые гормоны могут спокойно проникать через клеточную мембрану, которая состоит преимущественно из бислоя липидов.

Эндокринные железы (железы внутренней секреции) - железы и параганглии, синтезирующие гормоны, которые выделяются в кровеносные (венозные) или лимфатические капилляры. Эндокринные железы не имеют выводных протоков.

К железам внутренней секреции относятся:

Щитовидная железа

Паращитовидные железы

Вилочковая железа (тимус)

Надпочечники

Параганглии

Половые железы - яички и яичники

Инкреторная часть поджелудочной железы.

Гипоталамо-гипофизарная система (гипоталамус, гипофиз).

Структура эндокринной системы демонстрирует реализованную в живом организме стратегию иерархически организованного централизованного управления. Несмотря на популярность концепции диффузной нейроэндокринной системы, следует признать, что централизованные механизмы управления гормональным статусом организма играют все же первостепенную роль. С точки зрения теории сложных систем это также означает, что нет антагонистического противоречия между жестко иерархически построенной системой и периферической диффузной активностью локальных источников гормонов.

Итак, центральным органом этой системы, объединяющим нервные и гуморальные рычаги управления, служит гипоталамус. Эмбриональные закладки гипоталамуса и гипофиза относятся к одной группе клеток, и эта теснейшая связь, как структурная, так и функциональная, сохраняется между ними на протяжении всей последующей жизни.

Схематически управление эндокринной системой можно представить себе как управленческую пирамиду с кольцеобразно замкнутыми на разных уровнях ветвями обратной связи. Грубо говоря, гипоталамус вырабатывает либерины и статины, которые управляют активностью аденогипофиза; аденогипофиз выделяет тропные гормоны, которые направляются к удаленным железам-мишеням (надпочечник, щитовидная железа, половые железы) и несут им химически закодированные распоряжения об усилении или торможении секреции их собственных гормонов; периферические железы усиливают или уменьшают секрецию гормонов, которые воздействуют уже непосредственно на висцеральные органы-мишени. При этом следует подчеркнуть, что число разновидностей и количество молекул выделяемых гормонов увеличивается в этом ряду в геометрической прогрессии: гипоталамус вырабатывает единичные молекулы статинов и либеринов, гипофизвыделяет уже заметно большие количества тройных гормонов, а периферические (исполнительные) железы продуцируют специфические гормоны в количестве, необходимом для обработки всех органов-мишеней. Так в этой иерархической системе организован каскад усиления потока информационных молекул; однако, как и в каждой кибернетической системе, в управление этим потоком вмешиваются обратные связи, обеспечивающие тонкую подстройку потока информации к тем реальным событиям, которые происходят «на местах». Выделяют два контура регуляции по принципу обратной связи в деятельности эндокринной системы: первый - тормозящее влияние тропных гормонов гипофиза на секрецию нейропептидов гипоталамусом. Второй - влияние гормонов периферических желез как на гипоталамус, так и на аденогипофиз. Первый контур представляет собой короткую петлю (все события ограничиваются объемом гипоталамус-гипофиз, т.е. путь гормонов по петле обратной связи составляет не более нескольких сантиметров), второй - длинную петлю (в регуляцию включены периферические железы, удаленные от места расположения гипофиза и гипоталамуса на десятки сантиметров).

Следует отметить, что периферические железы также связаны между собой многочисленными и не до конца изученными связями нижнего уровня. Нарушения деятельности любой из желез внутренней секреции приводят к расстройству всей системы. В некоторой степени эти расстройства могут быть компенсированы наличием диффузно распределенных по разным органам железистым клеткам. Однако они не способны справиться с серьезными нарушениями в работе любой из важнейших специализированных эндокринных желез.

Гипофиз (от греч. hypóphysis - отросток), нижний мозговой придаток (hypophysis cerebri, glandula pituitaria), железа с внутренней секрецией, играющая у всех позвоночных животных и у человека ведущую роль в гормональной регуляции. Г. расположен в турецком седле основной кости черепа, у основания головного мозга и связан с ним посредством ножки (воронки), представляющей собой вырост дна 3-го мозгового желудочка. Форма, размер и вес Г. различны у разных видов и зависят от возраста и физиологического состояния организма. У человека Г. весит 0,5-0,6 г. В Г. различают три доли: переднюю (железистую), среднюю (промежуточную) и заднюю (нервную). Передняя и средняя доли закладываются у зародыша в виде выпячивания эпителия крыши первичной ротовой полости; задняя доля образуется из дна воронки промежуточного мозга. Эмбриональный зачаток передней и средней долей в дальнейшем отделяется от эпителия первичной ротовой полости, растет по направлению к мозгу и срастается с зачатком задней доли. Лишь у некоторых хрящевых рыб связь передней доли Г. с эпителием первичной ротовой полости сохраняется и у взрослых организмов. У одних млекопитающих, например у кошки, задняя доля Г. имеет полость, сообщающуюся с полостью 3-го желудочка, у других, например у собаки, полость сохраняется только в ножке, соединяющей Г. с промежуточным мозгом; у некоторых млекопитающих (например, у кролика и у всех приматов) задняя доля и ножка Г. лишены полости и представляют собой плотные образования. У взрослого организма Г. тесно связан анатомически с головным мозгом. Г. снабжен большим количеством нервных волокон, вступающих в него через ножку из гипоталамической области (см. Гипоталамус) и по стенкам гипофизарных артерий - из нервного сонного сплетения.

Передняя доля Г. взрослого организма состоит из железистого эпителия, в котором выделяют 3 типа клеток, различающихся по способности окрашиваться кислыми или основными красками: хромофобные, или главные, клетки; оксифильные, или эозинофильные, клетки и базофильные клетки. Хромофобные клетки - резервный материал, из которого развиваются оксифильные и базофильные клетки. Соотношение оксифильных и базофильных клеток в передней доле Г. меняется в зависимости от пола, возраста и физиологического состояния организма. Так, после удаления щитовидной железы (тиреоидэктомия) количество оксифильных клеток резко уменьшается, вплоть до полного исчезновения, базофильные клетки, дегенерируя, превращаются в т. н. клетки тиреоидэктомии; после кастрации базофильные клетки гипертрофируются и превращаются в т. н. клетки кастрации. Изменения в клеточном составе передней доли Г., наступающие после удаления щитовидной железы или кастрации, могут быть предотвращены или устранены введением тироксина или половых гормонов. Средняя доля Г. состоит из эпителиальной ткани. Задняя доля Г. образована нейроглией, в которой содержатся большие пирамидальные или веретенообразные клетки, т. н. питуициты. Наиболее сложна и разнообразна физиологическая роль передней доли Г., от нормальной функции которой зависят рост и размножение, основной, углеводный, минеральный, жировой и белковый обмен. Из экстракта передней доли Г. выделено 7 гормонов: гормон роста, или соматотропный гормон, тиреотропный гормон, фолликулостимулирующий гормон, лютеинизирующий гормон, лютеотропный гормон, пролактин (лактогенный) и адренокортикотропный гормон (АКТГ). Все гормоны передней доли имеют белковую природу и получены в очищенном виде, некоторые из них, например гормон роста и лактогенный, выделены в кристаллической форме, др. синтезированы (например, АКТГ). Тиреотропный и гонадотропные гормоны продуцируются базофильными клетками, которые в соответствии с этим делят на два типа: т. н. тиреотрофы и гонадотрофы. Оксифильные клетки вырабатывают гормон роста и пролактин. Вопрос о клетках, продуцирующих АКТГ, не решен; вероятно, он образуется базофилами.

Гормон роста. Хирургическое удаление Г. (гипофизэктомия) у молодого животного приводит к остановке роста. Инъекции таким животным гипофизарного экстракта, содержащего гормон роста, восстанавливают у них нормальный рост. Введение гормона роста молодым растущим животным резко стимулирует рост и приводит к гигантизму (в эксперименте были получены гиганты амбистомы, крысы, собаки и др. животных): у человека избыточное выделение гормона роста вызывает заболевание с явлениями гигантизма или акромегалии. Пониженное выделение гормона роста обусловливает карликовый рост (см. Нанизм). Фолликулостимулирующий, лютеинизирующий и лютеотропный гормоны. Атрофия половой системы, наступающая после удаления Г., может быть предотвращена введением гонадотропных гормонов. У инфантильных животных введение этих гормонов вызывает преждевременное половое созревание. Инъекция гипофизарного экстракта, содержащего гонадотропные гормоны, лягушкам вызывает у них икрометание и сперматогенез в осеннее и зимнее время; из икры после оплодотворения развиваются нормальные головастики. Фолликулостимулирующий гормон регулирует рост фолликулов в яичниках и сперматогенез. Лютеинизирующий гормон вызывает у самок преждевременный рост фолликулов, овуляцию, образование жёлтого тела, а у самцов - секрецию мужского полового гормона межуточными клетками семенника, т. е. клетками Лейдига. Лютеотропный гормон поддерживает функцию жёлтого тела; у некоторых животных (крыса, овца) этот гормон вызывает лактацию. Пролактин (лактогенный гормон). Участвует в регуляции процесса выделения молока. Удаление передней доли Г. у лактирующих самок прекращает секрецию молока; введение пролактина восстанавливает лактацию. Тиреотропный гормон. Удаление передней доли Г. вызывает атрофию щитовидной железы и, как следствие этого, снижение основного обмена. Инъекции гипофизарного экстракта, содержащего тиреотропный гормон, вызывают увеличение щитовидной железы и усиление её функции. А КТГ стимулирует деятельность коры надпочечников и выделение ею кортикостероидных гормонов, а также восстанавливает атрофированную в результате удаления Г. железу. Влияние передней доли Г. на обмен веществ осуществляется через гормон роста, АКТГ и др. гормоны.

Средняя доля Г. вырабатывает гормон интермедии, или меланоцитостимулирующий гормон, влияющий на окраску кожи рыб и земноводных. Физиологическое значение этого гормона у птиц и млекопитающих неясно.

Задняя доля Г. принимает участие в регуляции уровня кровяного давления, мочеотделения (гормон вазопрессин) и деятельности мускулатуры матки (гормон окситоцин). Вазопрессин и окситоцин образуются в паравентрикулярных и супраоптических ядрах гипоталамуса, откуда они поступают в заднюю долю Г. Оба гормона синтезированы.

Функции Г. зависят от условий внешней среды. Из опытов, проводимых на птицах и млекопитающих, установлено, что свет регулирует гонадотропную, тиреотропную и адренокортикотропную функции Г.; действие света на Г. осуществляется через центральную нервную систему. Доказано также, что эндокринные функции Г. находятся под контролем гипоталамуса, в котором вырабатываются особые нейрогуморальные вещества пептидной природы - т. н. высвобождающие, или релизинг-факторы, стимулирующие гуморальным путём секрецию гормонов Г. (см. Нейросекреция).

Патология Г. Нарушения нормальной деятельности Г. могут выражаться повышением (гиперпитуитаризм) или ослаблением (гипопитуитаризм) его отдельных функций, реже - в полном их выпадении. Повышение внутренней секреции Г. проявляется расстройствами роста и развития в детском возрасте - гигантизмом, у взрослых - акромегалией. Ослабление или выпадение функций Г. в детском возрасте приводит к задержке роста (карликовый рост), психического развития, инфантилизму, атрофии щитовидной железы и коры надпочечников, глубоким изменениям углеводного и жирового обмена, понижению окислительных процессов и др.; у взрослых - к ожирению, прекращению полового цикла, атрофии щитовидной, половых желёз и коры надпочечников и др. В механизме развития ряда т. н. гипофизарных заболеваний (Иценко - Кушинга болезнь, диабет несахарный, преждевременное половое созревание и др.) решающее значение имеют первичные нарушения деятельности гипоталамуса.

Щитовидная железа (glandula thyreoidea), специализированный эндокринный орган у позвоночных животных и человека; вырабатывает и накапливает иодсодержащие гормоны, участвующие в регуляции обмена веществ и энергии в организме.

Анатомия. Щ. ж. развивается у зародышей из эпителия жаберных мешков (карманов), закладывающихся в глоточной кишке в результате преобразования поджаберного железистого желобка (эндостиля) низших хордовых. Непарная Щ. ж. круглоротых расположена под нижней стенкой жаберной части кишечника, у рыб - у переднего края жаберных артерий (у костистых охватывает брюшную аорту в области передних жаберных дуг, у двоякодышащих намечается разделение её на 2 части).

Парная Щ. ж. земноводных находится в области подъязычного аппарата (у хвостатых позади 2-й дуги, у бесхвостых - под задними рожками). Непарная Щ. ж. пресмыкающихся часто разделена на 2 лопасти и располагается под трахеей. Пара Щ. ж. птиц лежит у основания бронхов. Щ. ж. млекопитающих состоит из двух долей, соединённых перешейком, но у некоторых распадается на 2 отдельные части. У низших позвоночных последняя (5-я) пара жаберных дуг даёт начало ультимобранхиальным тельцам, выделяющим гормон тиреокальцитонин. У млекопитающих эта ткань представлена т. н. С-клетками Щ. ж. У человека Щ. ж. полностью формируется к 8-9 мес. развития плода; состоит из 2 боковых долей и поперечного перешейка, соединяющего их близ нижних концов. Иногда от перешейка вверх отходит пирамидальная доля. Располагается на шее спереди дыхательного горла и на боковых стенках гортани, прилегая к щитовидному хрящу (отсюда название). Кзади боковые доли соприкасаются со стенками глотки и пищевода. Наружная поверхность Щ. ж. выпуклая, внутренняя, обращенная к трахее и гортани, вогнутая. Поперечник Щ. ж. около 50-60 мм,на уровне перешейка 6-8 мм. Масса около 15-30 г (у женщин несколько больше). Щ. ж. обильно снабжена кровеносными сосудами; к ней подходят верхние и нижние щитовидные артерии. Верхние шейный и звездчатый симпатические ганглии обеспечивают симпатическую иннервацию, а ветви блуждающего нерва - парасимпатическую.

Основная структурная и функциональная единица Щ. ж. - фолликул (шаровидной или геометрически неправильной формы), полость которого заполнена коллоидом, состоящим из иодсодержащего белка- тиреоглобулина. Фолликулы тесно прилегают друг к другу. Стенки фолликула выстланы однослойным железистым эпителием. Структуру Щ. ж. формирует и соединительнотканная строма, прилегающая к стенке фолликула и состоящая из коллагеновых и эластических волокон, с проходящими в ней сосудами и нервами. Форма, объём и высота клеток фолликулярного эпителия варьируют в зависимости от функционального состояния Щ. ж.: в норме эпителий кубический, при повышенной функциональной активности - высокий цилиндрический, при пониженной - плоский. Размеры комплекса Гольджи, число митохондрий и секреторных капель, содержащихся в тиреоидных клетках, увеличиваются в период активной секреторной деятельности. Число и длина микроворсинок, расположенных на апикальной поверхности эпителия и направленных в полость фолликула, также увеличиваются при повышении активности Щ. ж. Плотность, размеры, число и локализация цитоплазматических гранул характеризуют как процессы биосинтеза, так и выделения специфических продуктов.

Физиология. От нормальной функции Щ. ж. зависят такие основные биологические процессы, как рост, развитие и дифференцировка тканей. Щ. ж. секретирует 2 гормона - тироксин и трииодтиронин. Биологические эффекты тиреоидных гормонов в физиологических дозах проявляются в поддержании на оптимальном уровне энергетических и биосинтетических процессов в организме. Действие гормонов на процессы биосинтеза, а следовательно, и на рост и развитие организма опосредовано через регуляцию тканевого дыхания. Гормоны в высоких дозах усиливают все виды обмена веществ с преобладанием процессов катаболизма, расхода веществ и энергии в виде тепла, продуктов неполного и извращённого метаболизма. Механизм действия тиреоидных гормонов представляется этапами "узнавания" и восприятия сигнала клеткой и генерирования мол. процессов, определяющих характер ответной реакции. В клетках различных тканей обнаружены специфические белки-рецепторы, которые "узнают" гормон и включают биохимические реакции. Рост-активирующее влияние гормонов Щ. ж., связанное с усилением биосинтеза белков, реализуется через образование в ядрах клеток гормон-рецепторного комплекса, возбуждающего синтез информационной РНК и последующие этапы синтеза структурных белков и белков-ферментов. Функция Щ. ж. регулируется центр. нервной системой. В условиях постоянно меняющихся факторов внешней и внутренней среды коре головного мозга отводится ведущее значение в регуляции гипоталамо-гипофизарно-тиреоидной системы. Щ. ж. находится во взаимодействии и с др. железами внутренней секреции. Значительную роль в регуляции деятельности Щ. ж. принадлежит гипофизу: вырабатываемый им тиреотропный гормон стимулирует развитие и функции Щ. ж. См. также Нейросекреция.

Заболевания Щ. ж. у человека (воспалительные, см. Тиреоидит;опухоли; травмы; врождённая аномалия и др.) могут сопровождаться увеличением Щ. ж. (см. Зоб) и нарушением её функции: снижением продукции гормонов (гипотиреоз, вплоть до развития микседемы) или повышенным их образованием (см. Зоб диффузный токсический).

Околощитовидные железы,паращитовидные железы ( Glandulae parathyreoideae), органы внутренней секреции человека и позвоночных животных (исключая рыб). У ряда млекопитающих (мышь, крыса, крот, землеройка, ёж, свинья, тюлень) - 1 пара О. ж.; у других (летучая мышь, собака, кролик, кошка, морская свинка, верблюд, овца, коза) и у человека - 2 пары, расположенные на поверхности щитовидной железы или погруженные в её ткань. О. ж. состоят из железистой эпителиальной ткани (включая главные и оксифильные клетки, расположенные гнёздами и тяжами между капиллярами), покрытой соединительнотканной капсулой. Главные клетки многоугольной формы; их цитоплазма содержит большое число митохондрий, слабо базофильна и плохо окрашивается. Цитоплазма оксифильных клеток хорошо окрашивается кислыми красками. В клетках обоих типов обнаружены особые тельца, состоящие из эндоплазматических ретикулярных пластинок, служащих, вероятно, центрами синтетической активности клеток.

О. ж. вырабатывают паратиреоидный гормон (паратгормон), участвующий в регуляции обмена Са и Р в организме. Между концентрацией Са и Р в крови имеются реципрокные отношения. Гомеостаз Са и Р поддерживается влиянием на костную ткань и почки паратгормона, избыток которого вызывает деминерализацию костной ткани и вымывание из организма Са и Р. Излишек Р выделяется почками. При гиперпаратиреозе происходит размягчение костей, приводящее к их спонтанным переломам; при гипопаратиреозе наблюдается задержка развития зубов. Введение в организм паратгормона устраняет симптомы недостаточности О. ж. Удаление О. ж. приводит к появлению судорог (тетании), что обусловлено резким снижением концентрации Са в крови (с 9-11 до 4,5-5 мг%). Одновременно повышается содержание в крови Р. Приступы тетании могут наступить у животных с нормальными О. ж. при малом поступлении Са с пищей. Размеры О. ж. и их функциональное состояние зависят от уровня Са в крови.

Вилочковая железа (thymus, glandula thymus), зобная железа, тимус, внутренняя грудная железа, дольчатая железа внутренней секреции у позвоночных животных и человека. В. ж. развивается из энтодермального эпителия жаберных мешков.

У человека В. ж. закладывается на 6-й неделе развития. Зачатки В. ж. первоначально представлены только эпителиальной тканью. В процессе развития В. ж. строение её усложняется и она становится дольчатой. У человека В. ж. расположена в грудной полости в области верхнего межплеврального пространства переднего средостения. Она хорошо развита у новорождённых. К моменту рождения это самый большой лимфоидный орган, его ткань активнее всех других тканей организма продуцирует лимфоциты. Рост В. ж. продолжается до наступления половой зрелости, масса её к этому времени составляет 30-40 г; в дальнейшем происходит её обратное развитие. В. ж. снаружи покрыта соединительнотканной капсулой, от которой внутрь железы отходят перегородки, разделяющие её на дольки. В каждой дольке В. ж. различают корковое и мозговое вещество. Корковое вещество представляет собой эпителиальную ткань сетчатого строения, в петлях которой расположено большое количество лимфоцитов, что позволяет относить В. ж. к лимфоэпителиальным образованиям. В мозговом веществе, сходном по строению с корковым веществом, лимфоцитов меньше; в средней его части расположены слоистые эпителиальные тельца до 50 мкм в диаметре - тельца Гассаля - наиболее характерные структуры В. ж., образованные концентрически наслоёнными эпителиальными клетками. К 15 годам количество слоистых эпителиальных телец достигает максимума, после чего быстро убывает. Однако даже в старческом возрасте продолжается новообразование телец Гассаля. С возрастом корковая часть долек постепенно обедневает лимфоцитами. Редукция корковой части идёт быстрее, чем мозговой, но остатки её сохраняются даже после полного замещения вещества железы жировой тканью.

Функциональное значение В. ж. окончательно не выяснено. Имеются данные о сезонности функционирования В. ж. у низших позвоночных, об участии её в регуляции роста и минерального обмена в организме, а также в формировании специфического иммунитета. У птиц В. ж. рассматривают и как депо лабильных нуклеопротеидов, которые усиленно расходуются в периоды половой деятельности. В. ж. функционирует в тесной взаимосвязи с другими железами внутренней секреции (надпочечники, гипофиз, половые железы). В. ж. очень чувствительна к внешним воздействиям - физическим (облучение), химическим (многие канцерогены), гормональным (гормоны коры надпочечников, щитовидной, половых желёз и др.), на которые реагирует обратным развитием и атрофией. Кровоснабжение В. ж. осуществляется от внутренней артерии грудной железы и нижней щитовидной артерии; иннервация - ветвями блуждающего нерва, симпатического и диафрагмального нервов.

Встречаются отклонения от нормального развития В. ж.: аплазия (полное отсутствие), что обычно сочетается с другими пороками развития организма, и гипоплазия (недостаточное развитие В. ж.) - в комбинации с гипоплазией щитовидной железы и психической отсталостью. В некоторых случаях наблюдаются добавочные железы, расположенные на шее. Гиперплазия (значительное увеличение) В. ж. может препятствовать нормальному развитию соседних органов, вызвать нарушение дыхания и внезапную смерть; нередко служит проявлением тимико-лимфатического состояния.

Надпочечники, надпочечные железы (glandulae suprarenales), парный эндокринный орган у высших позвоночных животных и человека. В каждом Н. различают поверхностную часть (кору, или корковый слой), построенную из стероидогенной ткани и продуцирующую стероидные гормоны, и внутреннюю (мозговое вещество) - построенную из хромаффинной, или адреналовой, ткани и продуцирующую катехоламиновые гормоны. Н. одеты соединительно-тканной капсулой. У человека они в виде шапочек охватывают сверху почки (рис. 1).

Как обособленные органы, включающие в себя две разнородные железистые ткани, Н. развились в эволюции позвоночных не сразу. У рыб стероидогенная и хромаффинная ткани образуют в почечной области самостоятельные скопления. У земноводных такие скопления прилегают друг к другу, не теряя своей самостоятельности; у некоторых пресмыкающихся они пронизывают друг друга. Стероидогенная ткань Н. имеет у всех позвоночных мезодермальное происхождение, тогда как хромаффинная происходит от того же эктодермального зачатка, который даёт начало симпатическим нейронам. Раздельное кровоснабжение коры и мозгового вещества осуществляется несколькими артериями; богатая венозная сеть соединяется в одну центральную вену Н. Лимфатические сосуды образуют два сплетения - под капсулой и в мозговом слое. Иннервируются Н. волокнами чревного нерва, которые образуют надпочечниковое сплетение, соединяющееся с почечным и солнечным (см. Вегетативная нервная система).

Корковый слой, или кора, Н. у млекопитающих животных и человека разделён на 3 зоны, выполняющие разные функции: клубочковую, пучковую и сетчатую (рис. 2). Клетки клубочковой зоны собраны в клубочки и лежат под капсулой. Клетки пучковой, самой широкой зоны коры расположены прядями или пучками и пронизаны расширяющимися в этой зоне капиллярами. Клетки сетчатой зоны окружают мозговое вещество. Гормонами коры Н. являются гидрокортизон, альдостерон и кортикостерон, которые обнаруживаются в оттекающей от Н. крови. Всего из коры Н. выделено свыше 40 стероидных соединений - кортикостероидов; 5 из них (кортикостерон, гидрокортизон, кортизон, альдостерон, дезоксикортикостерон) обладают высокой биологической активностью. В зависимости от характера физиологического действия стероидные соединения коры Н. делят на следующие группы: минералокортикоиды (альдостерон, дезоксикортикостерон), глюкокортикоиды (кортикостерон, гидрокортизон, кортизон), андрогены (андростендион, дегидроэпиандростерон, тестостерон и др.), эстрогены (эстрон, эквиленин и др.). Основной минералокортикоид - альдостерон, физиологический регулятор минерального обмена - образуется в клубочковой зоне коры. У человека его содержание в плазме крови около 0,08 мкг/100 мл, экскреция с мочой 12-14 мкг/сут. Источник глюкокортикоидов - пучковая зона коры Н. В содержании двух основных из них - гидрокортизона и кортикостерона наблюдается определённая видовая специфичность. Так, у приматов основной глюкокортикоид - гидрокортизон; у крыс и кроликов - кортикостерон; у крупного рогатого скота, собак и кошек - равные количества того и другого.

Функции коры Н. контролируются адренокортикотропным гормоном гипофиза (АКТГ) и обнаруживают суточные колебания, обусловленные преимущественно действием света (см. Биологические ритмы, Фотопериодизм). Гормоны коры Н. играют важную роль в адаптации организма к неблагоприятным условиям. Реакция системы гипофиз - кора Н. на неблагоприятные условия (холод, инфекция, эмоциональное возбуждение, мышечная работа и др.) стереотипна и выражается в выделении АКТГ и кортикостероидов (см. Адаптационный синдром, Стресс). Активация этой системы осуществляется через центральную нервную систему (гипоталамус, кора головного мозга). Нарушения функций коры Н., возникающие при её опухолевых или инфекционных поражениях, а также изменениях в цепи биосинтеза стероидных гормонов, могут привести к ряду заболеваний (Иценко - Кушинга болезнь, Аддисонова болезнь, адреногенитальный синдром и др.).

В мозговом веществе Н. у млекопитающих животных и человека, помимо хромаффинной ткани, имеются немногочисленные нейроны. Мозговое вещество вырабатывает 2 гормона - адреналин и норадреналин. Кроме того, в оттекающей от Н. крови обнаружен в небольшом количестве предшественник этих гормонов - диоксифенилэтиламин (дофамин), который, возможно, является самостоятельным гормоном. В Н. человека содержится 0,5 мг адреналина и 0,1 мг норадреналина на 1 г ткани. В Н. животных разных видов содержание их неодинаково. Адреналин усиливает поглощение О2 тканями, стимулирует обмен веществ, повышает систолическое артериальное давление, увеличивает минутный объём сердца и частоту сердцебиений. Норадреналин повышает систолическое и диастолическое артериальное давление, снижает минутный объём, замедляет сердцебиение. Оба гормона стимулируют гликогенолиз в печени, в результате чего увеличивается содержание сахара в крови. Нарушение функции мозгового слоя Н. может быть обусловлено его опухолями - феохромоцитомой и др. См. также Катехоламины, Стероиды.

Поджелудочная железа, панкреас (pancreas), крупная пищеварительная железа животных и человека, обладающая внешнесекреторной (экзокринной) и внутрисекреторной (эндокринной) функциями; участвует в пищеварении и регуляции углеводного, жирового и белкового обмена. Среди беспозвоночных обособленная П. ж. (её считают отделившейся частью печени) есть только у головоногих моллюсков. У позвоночных П. ж. располагается в брыжейке средней кишки (у амниот - двенадцатиперстной кишки). в непосредственной близости от желудка (отсюда название). У миног, двоякодышащих рыб П. ж. скрыта в стенке кишечника; у миксин, осетровых и некоторых костистых рыб - в ткани печени (в последнем случае П. ж. вместе с печенью образует единый орган - hepatopancreas).

Экзокринная часть П. ж. имеет сложное альвеолярно-трубчатое строение; она покрыта тонкой соединительнотканной капсулой, от которой отходят прослойки соединительной ткани, разделяющие паренхиму П. ж. на отдельные дольки. Большая часть долек представлена концевыми секреторными отделами - ацинусами, клетки которых выделяют поджелудочный (панкреатический) сок. Выводные протоки долек сливаются в общие выводные протоки железы. Эндокринная часть П. ж. представлена особыми клеточными группами, расположенными в виде небольших островков (скоплений) в толще железистых долек (см. Лангерганса островки), хорошо снабженных кровеносными сосудами и не имеющих выводных протоков.

У человека П. ж. расположена в забрюшинном пространстве позади и ниже желудка поперёк позвоночника на уровне 1-2-го поясничных позвонков в виде уплощённого тяжа, вытянутого в горизонтальном направлении от двенадцатиперстной кишки до селезёнки (см. рис.). Длина П. ж. 15-25 см, ширина 3-9 см (в области головки), толщина 2-3 см, масса 70-80 г. Головка П. ж. (утолщённая правая часть) расположена в петле двенадцатиперстной кишки; хвост (суженная левая часть) соприкасается с селезёнкой. Тело П. ж. имеет вид 3-гранной призмы, спереди покрыто брюшиной. От хвоста к головке П. ж. проходит главный выводной проток, открывающийся в двенадцатиперстную кишку. Кровоснабжение П. ж. осуществляется через верхнюю и нижнюю поджелудочно-двенадцатиперстные артерии. Отток крови происходит в систему воротной вены. П. ж. имеет хорошо развитую сеть лимфатических сосудов. Иннервируется П. ж. парасимпатической и симпатической нервной системой (ветви чревного, верхнего брыжеечного, почечного и селезёночного сплетений). Из коры головного мозга импульсы идут в П. ж. через гипоталамус по парасимпатическим нервным волокнам к ацинарным клеткам, островкам и гладкомышечным клеткам протоков; симпатические волокна идут к кровеносным сосудам.

XX век характеризуется бурным развитием науки. Еще в начале века в учебниках физики писали, что атом неделим. Однако в скором времени атом был расщеплен, в результате чего была освобождена огромная энергия, которая преобразила мир (атомная бомба, атомная электростанция). Телевидение из фантастики стало реальностью, продолжается интенсивная компьютеризация всех отраслей народного хозяйства, активно осваиваются Мировой океан, космос, полярные области планеты, пустыни и горы, все чаще и чаще в различных уголках мира возникают военные конфликты. И в этом непредсказуемом мире человечество все чаще сталкивается с воздействием экстремальных условий жизнедеятельности, то есть со стрессами, которые и вызывают различные срывы высшей нервной деятельности в виде неврозов и неврозоподобных состояний.

Концепция стресса впервые была сформулирована в 1936 г. канадским физиологом Гансом Селье. Он ее разработал, проверил в экспериментах на животных и сделал попытку построить новую единую теорию медицины. Концепция Ганса Селье оказала большое влияние на различные направления науки о человеке - медицину, психологию, социологию и другие области знаний. Предпосылкой возникновения и широкого распространения учения о стрессе можно считать возросшую актуальность проблемы защиты человека от воздействия неблагоприятных факторов внешней среды.

Сегодня представители самых разных научных дисциплин весьма интенсивно исследуют стресс и его значение для больного и здорового человека.

Стресс многолик в своих проявлениях. Он может спровоцировать начало практически любого заболевания. В связи с этим в настоящее время растет потребность в расширении наших знаний о стрессе и способах его предотвращения и преодоления.

Однако это вовсе не значит, что стресс является только злом, с которым надо бороться и которое надо избегать в нашей жизни. Стресс, как указывал Г. Селье, «является не только злом, не только бедой, но является и великим благом, ибо без стрессов различного характера наша жизнь была бы похожа на какое-то бесцветное прозябание».

Стресс, по мнению Г. Селье, многолик: это не только повреждения и болезни, «но и важнейший инструмент тренировки и закаливания, ибо стресс помогает повышению сопротивляемости организма, тренирует его защитные механизмы». В этом, естественно, состоит положительная роль стресса, его важное социальное значение. Стресс является нашим верным союзником в непрекращающейся адаптации организма к любым изменениям в окружающей нас среде. «Поэтому правильное понимание положительных и отрицательных сторон стресса, - пишет О. Г. Газенко, - их адекватное использование или предотвращение играют важную роль в сохранении здоровья человека, создании условий для проявления его творческих возможностей, плодотворной и эффективной трудовой деятельности».

Физиология. Основы современных представлений о физиологии П. ж. и регуляции её деятельности были заложены И. П. Павловым с сотрудниками. У человека за сутки выделяется 1,5-2 л, у собаки - 600-800 мл поджелудочного сока - бесцветной жидкости щелочной реакции, без запаха, состоящей из неорганических (HCO-3, Cl-, Na+, Ca2+, Mg2+) и органических (главным образом белки, ферменты) веществ. Три основные группы ферментов - протеазы, липазы, амилаза - обеспечивают переваривание белков, жиров и углеводов. Наибольшее количество сока у человека и собаки выделяется на углеводную пищу, затем - на мясную, наименьшее - на жирную. Ферментный состав сока меняется в зависимости от характера питания. Секреция начинается через 1-3 мин после приёма пищи и продолжается 6-10 ч. Натощак она незначительна. Внутрисекреторная функция П. ж. состоит в выработке ряда гормонов, в том числе инсулина, глюкагона, поступающих непосредственно в кровь. Деятельность П. ж. регулируется нервно-гормональными механизмами. На П. ж. оказывают влияние гормоны пищеварительного тракта - секретин, панкреозимин, гастрин, а также гормоны щитовидной и паращитовидной желёз, гипофиза, надпочечников. Существует тесная функциональная взаимосвязь между П. ж. и др. органами пищеварительной системы. Наиболее частые заболевания её -острые и хронические панкреатиты. При нарушении выработки инсулина развивается диабет сахарный.

Мужская половая система человека представляет собой совокупность органов системы размножения у мужчин. Половые органы мужчины разделяют на внутренние и наружные. К внутренним относятся половые железы - яички (с их придатками), в которых развиваются сперматозоиды и вырабатывается половой гормон тестостерон, семявыносящие протоки, семенные пузырьки, предстательная железа, бульбоуретральные железы. К наружным половым органам относятся мошонка и половой член. Мужской мочеиспускательный канал кроме выведения мочи, служит для прохождения семени, поступающей в него из семявыбрасывающих протоков.

Же́нская полова́я систе́ма человека состоит из двух основных частей: внутренних и наружных половых органов. Наружные половые органы в совокупности носят название вульва.

Внутренние половые органы

Фаллопиевы трубы

Влагалище

Наружные половые органы

Большие половые губы

Малые половые губы

Девственная плева

Определяющей возможностью зачатия ребенка для мужчины является способность образования полноценных половых клеток - сперматозоидов (живчиков). Развитие мужских половых клеток находится под постоянным гормональным регулированием и является длительным и сложным процессом. Этот процесс называется сперматогенезом.

В возрасте до 5 лет мужские половые железы (яички) находятся в состоянии относительного покоя, в 6-10 лет в них появляются единичные самые первые клетки сперматогенеза - сперматогонии. Полное формирование сперматогенеза приходится на 15-16 лет.

Весь процесс спермообразования до момента полного созревания занимает примерно 72 дня. Его условно делят на четыре стадии:

размножение -> рост -> созревание -> формирование.

На каждой из стадий сперматогенеза эволюцию сперматозоида условно можно описать так:

сперматогонии –> сперматоциты –> сперматиды –> сперматозоиды.

Весь процесс формирования сперматозоида протекает при температуре, которая на 1-2°С ниже температуры внутренних областей тела. Более низкая температура мошонки частично определяется ее положением, а частично - сосудистым сплетением, образуемым артерией и веной семенника и действующим как противоточный теплообменник. Сокращения особых мышц перемещают семенники ближе или дальше от тела в зависимости от температуры воздуха, чтобы поддерживать температуру в мошонке на уровне, оптимальном для образования спермы. Если мужчина достиг половой зрелости, а семенники не опустились в мошонку (состояние, называемое крипторхизмом), то он навсегда остается стерильным, а у мужчин, носящих слишком тесные трусы или принимающих очень горячие ванны, образование спермиев может так сильно понизиться, что это приведет к бесплодию. Очень низкие температуры так же прекращают выработку спермы, но не уничтожают хранящуюся.

Процесс сперматогенеза протекает непрерывно на всем протяжении половой активности организма (у большинства мужчин практически до конца жизни), но выделяется сперма во внешнюю среду лишь в определенные моменты. При половом возбуждении сперматозоиды, накопившиеся в придатке яичка, вместе с секретом придатков движутся по семявыводящему протоку к семенным пузырькам. Секрет придатков разжижает среду, обеспечивая большую подвижность сперматозоидов и питает сперматозоиды при извержении семени. При половом возбуждении одновременно вырабатывается и секрет предстательной железы, он выбрасывается в задний отдел мочеиспускательного канала. Секрет железы активизирует подвижность сперматозоидов. Вся эта смесь (выделения предстательной железы, сперматозоиды, выделения семенных пузырьков) и образует сперму и в момент наибольшего полового возбуждения происходит выброс этой смеси наружу – эякуляция. После эякуляции сперматозоиды сохраняют свою жизнеспособность непродолжительное время - 48–72 часа.

Основной функцией женской половой системы является репродуктивная функция. Это значит, что зачатие нового организма и его вынашивание происходит в организме женщины. Эта функция выполняется путем взаимодействия нескольких органов, относящихся к женской половой системе. Это взаимодействие обеспечивает гормональная регуляция. Именно эта регуляция является главным звеном в реализации репродуктивной функции женского организма.

Железа гипофиз, располагающаяся в головном мозге, является одним из высших отделов гормональной регуляции во всех внутренних органах и системах в организме человека. Гипофиз выделяет гормоны, регулирующие работу других эндокринных желез – половых желез (ЛГ и ФСГ), щитовидной железы (ТТГ – тиреотропный гормон), надпочечников (АКТГ – адренокортикотропный гормон). Также гипофиз выделяет ряд гормонов, которые регулируют работу – половых органов (окситоцин), мочевыделительной системы (вазопрессин или антидиуретический гормон), молочной железы (пролактин, окситоцин), костной системы (СТГ или гормон роста).

Работу половой системы регулируют несколько «основных» гормонов, выделяемых гипофизом: ФСГ, ЛГ, пролактин. ФСГ – фолликулостимулирующий гормон - действует на процесс созревания фолликулов. Таким образом при недостаточной/избыточной концентрации этого гормона нарушается процесс созревания фолликулов, что может привести к бесплодию («Причины женского бесплодия»). ЛГ – лютеинизирующий гормон – учавствует в овуляции и образовании желтого тела. Пролактин (молочный гормон) влияет на секрецию молока во период лактации. Пролактин относится к гормонам антагонистам (соперникам) ФСГ и ЛГ, т.е. повышение концентрации пролактина в организме женщины вызывает нарушение работы яичников, что может привести к бесплодиюКроме этого, работу половой системы женщины регулируют гормоны, выделяемые другими эндокринными железами: гормоны щитовидной железы - Т4 (тироксин), Т3 (трийодтиронин); гормоны надпочечников – ДЭА и ДЭА-С. Нарушение функции данных эндокринных желез приводит к нарушению работы репродуктивной системы и соответсвенно к бесплодию

Циклические изменения в организме женщины или менструально-овариальный цикл

В организме женщины каждый месяц происходит изменение слизистой оболочки матки (менструальный цикл) и изменение в яичниках (овариальный цикл). Таким образом, правильно говорить о менструально-овариальном цикле. Менструально–овариальный цикл длится от первого дня менструации до первого дня следующей менструации (от 21 до 35 дней).

Овариальный (яичниковый) цикл состоит из созревания фолликула (фолликулогенез), овуляции и образования желтого тела.

Под влиянием гормона ФСГ в начале менструального цикла начинается созревание фолликулов в яичнике – так назывемая фолликулиновая фаза менструального цикла. ФСГ воздействует на первичные фолликулы, что приводит к их росту. Обычно в рост вступают несколько первичных фолликулов, но уже ближе к середине цикла один из фолликулов становится "лидером". В процессе роста лидирующего фолликула его клетки начинают вырабатывть гормон эстрадиол, вызывающий утолщение слизистой оболочки матки.

В середине менструального цикла, когда фолликул достигает 18-22 мм, гипофиз выделяет лютеинизирующий гормон - ЛГ (овуляторный пик), приводящий к овуляции (разрыв фолликула и выход из него яйцеклетки в брюшную полость). Затем под влиянием опять же ЛГ образуется желтое тело – эндокринная железа, которая выделяет прогестерон - «гормон беременности». Под влиянием прогестерона изменяется слизистая оболочка матки (лютеиновая фаза цикла), что подготавливает ее к беременности. Таким образом бесплодие может возникать и из-за недостаточной функции желтого тела.

Менструальный цикл - это изменения слизистой оболочки матки (эндометрия), происходящие вместе с яичниковым циклом. В фолликулиновую фазу цикла происходит утолщение эндометрия (под влиянием гормона эстрадиола). После овуляции гормон желтого тела (прогестерон) вызывает в клетках эндометрия накопление большого количества питательных веществ для эмбриона – лютеиновая фаза цикла.

При отсутствии оплодотворения возникает отторжение слизистой оболочки матки – менструация. Вместе с менструацией происходит созревание первичных фолликулов - новый менструальный цикл.