Гарантийный... Возврат Порядок

Как происходит первичная переработка нефти? Перегонка нефти. Фракционная перегонка нефти На чем основана первичная переработка нефти

Сергей Пронин

Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, от 0,005% до 0,2%. Кроме того, тёмные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

В связи с этим, нефтяные фракции поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Приведённые в статье параметры технологических режимов, размеров аппаратов, выходов продуктов в целом приводятся справочно, так как в каждом конкретном случае могут варьироваться в зависимости от качества сырья, заданных параметров продуктов, выбранного аппаратурного оформления, типов применяемых катализаторов и других факторов.

Углеводороды, входящие в состав нефти и нефтепродуктов

Поскольку при описании процессов вторичной переработки используются наименования групп углеводородов, входящих в состав нефти и нефтепродуктов, приведём краткие описания данных групп и влияние углеводородного состава на показатели качества нефтепродуктов.

Парафины - насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

1. Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.

2. Изопарафины - с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками (например, изооктан - эталонное вещество с октановым числом 100) и пониженной, по сравнению с нормальными парафинами, температурой застывания.

Нафтены (циклопарафины) - насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды - ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом. Поэтому процесс, направленный на повышение октанового числа прямогонных фракций - каталитический риформинг, предусматривает превращение других групп углеводородов в ароматические. При этом предельное содержание ароматических углеводородов и, в первую очередь, бензола в бензинах ограничивается стандартами.

Олефины - углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Рис.8. Структурные формулы молекул углеводородов, относящихся к различным группам

1. Каталитический риформинг

Каталитический риформинг предназначен для повышения октанового числа прямогонных бензиновых фракций путём химического превращения углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Научные основы процесса разработаны нашим соотечественником - выдающимся русским химиком Н.Д.Зелинским в начале ХХ века.

Выход высокооктанового компонента составляет 85-90% на исходное сырьё. В качестве побочного продукта образуется водород, который используется на других установках НПЗ, которые будут описаны ниже.

Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью.

Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180°С. Сырьё подвергается предварительной гидроочистке - удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.

Установки риформинга существуют 2-х основных типов - с периодической (рис. 9,10) и непрерывной (рис.11) регенерацией катализатора - восстановлением его первоначальной активности, которая снижается в процессе эксплуатации. В России для повышения октанового числа в основном применяются установки с периодической регенерацией, но в 2000-х гг. в Кстово и Ярославле введены установки и с непрерывной регенерацией, которые эффективнее технологически (возможно получения компонента с октановым числом 98-100), однако, стоимость их строительства выше.

Процесс осуществляется при температуре 500-530°С и давлении 18-35 атм (2-3 атм на установках с непрерывной регенерацией). Основные реакции риформинга поглощают существенные количества тепла, поэтому процесс ведется последовательно в 3-4 отдельных реакторах, объёмом от 40 до 140 м3, перед каждым из которых продукты подвергаются нагреву в трубчатых печах. Выходящая из последнего реактора смесь отделяется от водорода, углеводородных газов и стабилизируется. Полученный продукт - стабильный риформат охлаждается и выводится с установки.

При регенерации осуществляется выжиг образующегося в ходе эксплуатации катализатора кокса с поверхности катализатора с последующим восстановлением водородом и ряд других технологических операций. На установках с непрерывной регенерацией катализатор движется по реакторам, расположенным друг над другом, затем подаётся на блок регенерации, после чего возвращается в процесс.

Каталитический риформинг на некоторых НПЗ используется также в целях производства ароматических углеводородов - сырья для нефтехимической промышленности. Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов (сольвента).

2. Каталитическая изомеризация

Изомеризация также применяется для повышения октанового числа легких бензиновых фракций. Сырьём изомеризации являются легкие бензиновые фракции с концом кипения 62°С или 85°C. Повышение октанового числа достигается за счёт увеличения доли изопарафинов. Процесс осуществляется в одном реакторе при температуре, в зависимости от применяемой технологии, от 160 до 380°C и давлении до 35 атм.

На некоторых заводах, после ввода новых установок риформинга крупной единичной мощности, старые установки мощностью 300-400 тыс. тонн в год перепрофилируют на изомеризацию. Иногда риформинг и изомеризация объединяются в единый комплекс по производству высокооктановых бензинов.

3. Гидроочистка дистиллятов

Задача процесса - очистка бензиновых, керосиновых и дизельных фракций, а также вакуумного газойля от сернистых и азотсодержащих соединений. На установки гидроочистки (рис. 12) могут подаваться дистилляты вторичного происхождения с установок крекинга или коксования, в таком случае идет также гидрирование олефинов. Мощность установок составляет от 600 до 3000 тыс. тонн в год. Водород, необходимый для реакций гидроочистки, поступает с установок риформинга.

Сырьё смешивается с водородсодержащим газом (далее - ВСГ) концентрацией 85-95% об., поступающим с циркуляционных компрессоров, поддерживающих давление в системе. Полученная смесь нагревается в печи до 280-340°C, в зависимости от сырья, затем поступает в реактор (рис. 13). Реакция идет на катализаторах, содержащих никель, кобальт или молибден под давлением до 50 атм. В таких условиях происходит разрушение сернистых и азотсодержащих соединений с образованием сероводорода и аммиака, а также насыщение олефинов. В процессе за счет термического разложения образуется незначительное (1,5-2%) количество низкооктанового бензина, а при гидроочистке вакуумного газойля также образуется 6-8% дизельной фракции. Продуктовая смесь отводится из реактора, отделяется в сепараторе от избыточного ВСГ, который возвращается на циркуляционный компрессор. Далее отделяются углеводородные газы, и продукт поступает в ректификационную колонну, с низа которой откачивается гидрогенизат - очищенная фракция. Содержание серы, например, в очищенной дизельной фракции, может снизиться с 1,0% до 0,005-0,03%. Газы процесса подвергаются очистке с целью извлечения сероводорода, который поступает на производство серы, или серной кислоты.

4. Каталитический крекинг

Каталитический крекинг - важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом. Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора. Целевой продукт установки КК - высокооктановый компонент бензина с октановым числом 90 пунктов и более, его выход составляет от 50 до 65% в зависимости от используемого сырья, применяемой технологии и режима. Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация. В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль - компонент дизельных и печных топлив, и тяжелый газойль - сырьё для производства сажи, или компонент мазутов.

Мощность современных установок в среднем - от 1,5 до 2,5 млн тонн, однако на заводах ведущих мировых компаний существуют установки мощностью и 4,0 млн. тонн.

Нефть - сложная субстанция, состоящая из взаиморастворимых органических веществ (углеводородов). При этом у каждого отдельно взятого вещества есть собственный молекулярный вес и температура кипения.

Сырая нефть, в том виде, в каком ее добывают, бесполезна для человека, из нее можно извлечь лишь небольшое количество газа. Чтобы получить нефтепродукты иного рода, нефть неоднократно перегоняют через специальные устройства.

В процессе первой перегонки происходит разделение, входящих в состав нефти веществ на отдельные фракции, что в дальнейшем способствует появлению бензина, дизельного топлива, различных машинных масел.

Установки для первичной переработки нефти

Первичная переработка нефти начинается с ее поступления на установку ЭЛОУ-АВТ. Это далеко не единственная и не последняя установка, необходимая для получения качественного продукта, но от работы именно этой секции зависит эффективность остальных звеньев в технологической цепочке. Установки для первичной переработки нефти являются основой существования всех нефтеперерабатывающих компаний в мире.

Именно в условиях первичной перегонки нефти выделяются все компоненты моторного топлива, смазочные масла, сырье для вторичного процесса переработки и нефтехимии. От работы данного агрегата зависит и количеств, и качество топливных компонентов, смазочных масел, технико-экономические показатели, знание которых необходимо для последующих процессов очистки.

Стандартная установка ЭЛОУ-АВТ состоит из следующих блоков:

  • электрообессоливающая установка (ЭЛОУ);

  • атмосферного;

  • вакуумного;

  • стабилизационного;

  • ректификационного (вторичная перегонка);

  • защелачивающего.

Каждый из блоков отвечает за выделение определенной фракции.

Процесс переработки нефти

Только что добытая нефть разделяется на фракции. Для этого используется разница в температуре кипения отдельных ее компонентов и специальное оборудование - установка.

Сырую нефть переправляют в блок ЭЛОУ, где из нее выделяют соли и воду. Обессоленный продукт подогревают и направляют в блок атмосферной перегонки, в котором нефть частичным образом отбензинивается, подразделяясь на нижние и верхние продукты.

Отбензиненная нефть из нижней части перенаправляется в основную атмосферную колонну, где происходит выделение керосиновой, легкой дизельной и тяжелой дизельной фракций.

Если вакуумный блок не работает, то мазут, становится частью товарно-сырьевой базы. В случае включения вакуумного блока данный продукт подогревается, поступает в вакуумную колону, и из него выделяется легкий вакуумный газойль, тяжелый вакуумный газойль, затемненный продукт, гудрон.

Верхние продукты бензиновой фракции перемешиваются, освобождаются от воды и газов, передаются в стабилизационную камеру. Верхняя часть вещества охлаждается, после чего испаряется, как конденсат, или газ, а нижняя направляется на вторичную перегонку для разделения на более узкие фракции.

Технология переработки нефти

Чтобы понизить затраты на переработку нефти, связанные с потерями легких компонентов и износом аппаратов для переработки вся нефть подвергается предварительной обработке, суть которой заключается в разрушении нефтяных эмульсий механическим, химическим, или электрическим путем.

Каждое предприятие использует свою собственную методику переработки нефти, но общий шаблон остается единым для всех организаций, задействованных в данной области.

Процесс переработки чрезвычайно трудоемок и продолжителен, связано это, прежде всего, с катастрофическим снижением количества легкой (хорошо перерабатываемой) нефти на планете.

Тяжелая нефть подается переработке с трудом, но новые открытие в данной области совершаются ежегодно, поэтому число эффективных способов и методов работы с этим продуктом увеличивается.

Химическая переработка нефти и газа

Образовавшиеся фракции можно преобразовывать друг в друга, для этого достаточно:

  • использовать метод крекинга - крупные углеводороды разбиваются на малые;

  • унифицировать фракции - совершить обратный процесс, объединив маленькие углеводороды в крупные;

  • произвести гидротермальные изменения - переставлять, замещать, объединять части углеводородов для получения нужного результата.

В процессе крекинга происходит разлом больших углеводов на малые. Этому процессу способствуют катализаторы и высокая температура. Для объединения малых углеводородов используется специальный катализатор. По завершению объединения выделяется газообразный водород также служащий для коммерческих целей.

Чтобы произвести другую фракцию или структуру, молекулы в остальных фракциях перестраивают. Делается это в ходе алкилирования - смешивании пропилена и бутилена (низкомолекулярные соединения) с фтористо-водородной кислотой (катализатор). В результате получаются высокооктановые углеводороды, используемые для повышения октанового числа в бензиновых смесях.

Технология первичной переработки нефти

Первичная переработка нефти способствует разделению ее на фракции, без затрагивания химических особенностей отдельных компонентов. Технология данного процесса направлена не на кардинальное изменение структурного строения веществ на разных уровнях, а на изучение их химического состава.

В ходе применения специальных приборов и установок из поступившей на производство нефти выделяются:

  • бензиновые фракции (температура кипения устанавливается индивидуально, в зависимости от технологической цели - получения бензина для машин, самолетов, иного рода техники);

  • керосиновые фракции (керосин применяется в качестве моторного топлива и систем освещения);

  • газойлевые фракции (дизельное топливо);

  • гудрон;

  • мазут.

Разделение на фракции является первым этапом по очистке нефти от различного рода примесей. Чтобы получить действительно качественный продукт, необходима вторичная очистка и глубокая переработка всех фракций.

Глубокая переработка нефти

Глубокая переработка нефти предполагает включение в процесс переработки уже дистиллированных и химически обработанных фракций.

Цель обработки - удаление примесей, содержащих органические соединения, серу, азот, кислород, воду, растворенные металлы и неорганические соли. В ходе переработки фракции разбавляют серной кислотой, удаляемой из них при помощи сероводородных скрубберов, либо водородом.

Переработанные и охлажденные фракции смешивают и получают различные виды топлива. От глубины переработки зависит качество конечного продукта - бензина, дизельного топлива, машинных масел.

Техник, технолог по переработке нефти и газа

Нефтеперерабатывающая отрасль оказывает значительное воздействие на разные сферы жизни общества. Профессия технолог по переработке нефти и газа считается одной из самых престижных и одновременно опасных в мире.

Технологи непосредственно отвечают за процесс очистки, перегонки и дистилляции нефти. Технолог следит за то, чтобы качество продукции соответствовало существующим стандартам. Именно за технологом остается право выбора последовательности совершенных операций при работе с оборудованием, этот специалист отвечает за его настройку и выбор нужного режима.

Технологи постоянно:

  • изучают новые методы;

  • применяют на практике опытные технологии переработки;

  • выявляют причины технических ошибок;

  • ищут способы предотвращения возникших проблем.

Для работы технологом необходимы не только знания в нефтедобывающей отрасли, но и математический склад ума, находчивость, точность и аккуратность.

Новые технологии первичной и последующих переработок нефти на выставке

Использование ЭЛОУ установок во многих странах считается устаревшим способом переработки нефти.

Актуальным становится необходимость постройки специальных печей из огнеупорного кирпича. Внутри каждой такой печи имеются трубы, длиной в несколько километров. Нефть движется по ним со скоростью 2 метра в секунду при температуре до 325 градусов Цельсия.

Конденсация и охлаждение пара производится за счет ректификационных колонн. Конечный продукт поступает в серию резервуаров. Процесс непрерывен.

О современных методах работы с углеводородами можно узнать на выставке «Нефтегаз» .

В ходе работы выставки участники уделяют особое внимание вторичной переработке продукта и использованию таких методов, как:

  • висбрекинг;
  • коксование нефтяных остатков тяжелого типа;
  • риформинг;
  • изомеризация;
  • алкилирование.

Технологии переработки нефти улучшаются с каждым годом. Последние достижения в отрасли можно увидеть на выставке.

Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

По той причине, что в описании используются наименования различных углеводородов, следует привести их описание и зависимость товарного сырья от содержания этих углеводородов.

Парафины – вещества, не обладающие устойчивыми двойными связями между атомами углерода. Такие парафины, имеющие линейное и разветвленное строение, именуют насыщенными. Парафины подразделяют на следующие виды:

  • Нормальные. Обладают линейным строением, низким октановым числом и высокой температурой застывания. По этим причинам данные углеводороды при вторичной переработке подвергаются трансформации.
  • Изопарафины. Имеют разветвленное строение, неплохие антидетонационные показатели и довольно низкой температурой застывания.
  • Циклопарафины или нафтены обладают циклическим строением. Данные углеводороды положительным образом сказываются на качестве дизельного топлива и масел для смазки. Проведение риформинга продукта, содержащего нафтены в тяжелых фракциях бензина, располагает к высокому выходу и октановому числу.
  • Ароматические углеводороды состоят из бензольных колец. Данные кольца имеют атом водорода, который связан с шестью атомами углерода. Имеют довольно высокое октановое число, но негативно сказываются на экологической составляющей топлива. По этой причине для повышения октанового числа углеводороды подвергают превращению в ароматические методом каталитического риформинга.
  • Олефины могут обладать нормальным, разветвленным или циклическим строением. Нефтепродукты, получаемые после первичной переработки, данными углеводородами практически не обладают. Олефины оказывают негативное влияние на качество масел из-за химической агрессивности.

Процессы вторичной переработки нефтепродуктов:

Каталитический риформинг, каталитическая изомеризация и гидроочистка дистиллятов – технология, особенности процессов

1. Каталитический риформинг.

Данный процесс применяют в тех случаях, когда необходимо повысить октановое число за счет преобразований углеводородов. Значения октанового числа при этом могут составлять 92-100 позиций. Повышение данного значения осуществляется за счет увеличения доли ароматических углеводородов в смеси. Теоретические основы процесса были изложены в начале прошлого столетия Зелинским Н.Д.

При мощности установок от 300000 до 1000000 тонн/год объемная доля необходимого высококачественного сырья достигает 85-90 %. Сопутствующим компонентом риформинга является водород, который поступает на другие установки для дальнейшей переработки.

Самым лучшим сырьем является фракция бензина с температурой кипения от 85 до 180 0С. Перед риформингом нефтепродукт предварительно очищается от серы и азота, негативно сказывающихся на конечном результате.

Риформинг может происходить на установках двух видов: с периодической и постоянной регенерацией катализатора. В нашей стране на большинстве установок происходит периодическая регенерация. Относительно недавно в эксплуатацию введено несколько установок с постоянной регенерацией, которые значительно эффективнее. Однако, цена их также выше.

Рабочая температура в таких установках достигает значений в 500 – 530 0С, а давление – до 35 Атм. Для примера, в установках с непрерывной регенерацией давление составляет от двух до трех «атмосфер». Из-за того, что реакция риформинга поглощает значительное тепло, процесс протекает постепенно в трех-четырех отдельных камерах. Перед каждой секцией сырье предварительно подогревается. На выходе из последней камеры происходит отделение водорода, охлаждение готового продукта и вывод с установки.

На ряде нефтеперерабатывающих заводов данный технологический процесс применяется для получения ароматических углеводородов, которые являются сырьевой базой для многих продуктов химической промышленности.

2. Каталитическая изомеризация.

Данный процесс осуществляется также с целью повышения октанового числа. Сырьем для изомеризации являются легкие фракции бензина, температура которых колеблется в пределах от 62 до 85 0С. Повысить октановое число удается благодаря увеличению содержания изопарафинов. Весь процесс протекает в одной камере при температуре 160 – 380 0С и давлении до 35 Атм.

В практику ряда НПЗ вошло переоборудование устаревших установок риформинга в установки для изомеризации. Нередко также происходит объединение этих процессов под началом единого комплекса.

3. Гидроочистка дистиллятов.

Основной задачей данного процесса является устранение присутствия серы и азота в различных нефтепродуктах. Для этого применяют, как чистые дистиллянты, так и те, которые уже были использованы, то есть вторичные. Водород, который отделяется при риформинге, поступает также сюда.

Разрушение сернистых и азотосодержащих компонентов происходит после смешения сырья с газом, содержащим водород, нагрева до 280 – 340 0С и подачи смеси под давлением в 50 Атм. на катализаторы из никеля, кобальта или молибдена. На выходе получается небольшое количество низкооктанового бензина и дизельной фракции. Далее из смеси удаляется лишний водородосодержащий , и она поступает колонну ректификации. Результатом гидроочистки, например, может являться снижение содержания серы в дизельной фракции до 0,005 % при первоначальном значении в 1 %.

Гидрокрекинг и каталитический крекинг – технология, особенности процессов

4. Каталитический крекинг

Данный процесс вторичной переработки нефтепродуктов относится к числу самых значимых. От его осуществления зависит эффективность работы нефтеперерабатывающего завода. Суть процесса сводится к воздействию на нефтепродукт температурным режимом в присутствии катализатора. В результате этого, ряд углеводородов разлагается, а на выходной линии установки можно получить бензин с октановым числом более 90 позиций. Количество готовой продукции составляет 50-65 %. Каталитический крекинг включает в себя также изомеризацию. Этим объясняется высокое октановое число. Второстепенными продуктами переработки являются пропилен и бутилен, применяемые в нефтехимической промышленности, а также компоненты для производства дизельного топлива, сажи и мазута.

Средняя производительность большинства установок достигает 2,5 млн. тонн, но существуют системы, позволяющие производить и 4 млн. тонн продукции в год.

В основном блоке установки происходит нагревание сырья, крекинг и регенирация катализатора. В последнем случае происходит выжигание кокса, который выделяется после крекинга и осаждается на поверхностях. Циркуляция катализатора происходит по трубопроводам, которыми обвязаны все основные узлы установки.

В настоящее время можно сказать, что мощностей установок крекинга в России не хватает. Решение проблемы заключается не только в строительстве новых установок, но и реконструкции имеющихся систем нефтеперерабатывающих заводов.

Совсем недавно в нашей стране осуществили реконструкцию установок в Рязани и Ярославле, а в Нижнекамске введена в эксплуатацию новая установка крекинга. В нижнекамской установке применяется технология иностранных компаний.

Каталитический крекинг нередко включают в состав установок, позволяющих последовательно осуществлять гидроочистку сырья.

5. Гидрокрекинг

Назначение этого процесса связано с выработкой керосиновых и дизельных дистиллятов высочайшего качества. Достигается это за счет крекинга углеводородов нефтепродукта с одновременным присутствием водорода. Отличные показатели эксплуатации и влияния на экологию достигаются за счет качественной очистки сырья от серы, насыщения олефинов и ароматических углеводородов. Для примера можно отметить, что присутствие серы в конечном дизельном дистилляте после гидрокрекинга, составляет лишь миллионные доли процентов. Фракция бензина также характеризуется высоким показателем октанового числа, а тяжелая фракция может использоваться в качестве сырья для риформинга. Кроме того, гидрокрекинг применяется для получения моторных масел, которые по своим показателям близки к синтетическим продуктам.

Мощности установок гидрокрекинга, чаще всего, достигают значений в три-четыре млн. тонн в год.

Водорода, который поступает с установок риформинга, обычно недостаточно для осуществления гидрокрекинга. Для обеспечения потребностей в этом газе на заводах строят дополнительные установки. Водород на них производится благодаря паровой конверсии газов на основе углеводорода.

Технология процесса гидрокрекинга схожа с той, которая применяется на установках гидроочистки. Нефтепродукт, поступая в установку, смешивается с газом, содержащим водород. Далее он нагревается и поступает в реактор вместе с катализатором. Продукты, отделившиеся от газов, отправляются на ректификацию. Из-за того, что при гидрокрекинге происходит выделение тепла, водородосодержащий газ подается в охлажденном состоянии. Температура при этом регулируется объемом подаваемого газа. Из-за того, что контроль температуры значительно влияет на безопасность процесса, его осуществление относится к числу важнейших задач по недопущению вероятных аварий.

Установки гидрокрекинга, как любое другое сооружение, имеют различия, которые обусловлены различными конечными результатами и применяемым сырьем.

Давление до 80 Атм. и температура порядка 350 0 С в единственном реакторе позволяют получать вакуумный газойль с незначительным содержанием серы.

Для того, что получить максимум светлых фракций реакции проводят на двух реакторах. При таком процессе продукт из первого реактора отправляется на ректификацию. Там отделяются светлые фракции. Повторный гидрокрекинг проводится с остатками во втором реакторе. Гидрокрекинг вакуумного газойля осуществляют при давлении 180 Атм, мазута и гудрона – свыше 300. А температура при этом составляет, соответственно, 380 и 450 0 С.

Гидрокрекинг как таковой, в нашей стране появился относительно недавно. Такие установки в 2000-х годах появились в Перми, Уфе, Ярославле. На некоторых НПЗ проведена реконструкция имеющихся установок под установки гидрокрекинга.

Наличие современных установок гидрокрекинга позволяет проводить полноценную вторичную переработку с целью получения бензинов с высоким октановым числом и средних дистиллятов высокого качества.

Коксование и товарное производство – технология, особенности процессов

6. Коксование

Процесс коксования проводят с тяжелыми остатками нефти любой стадии переработки. Результатом этого является получение кокса, который используется в металлургии качестве сырья для изготовления электродов. Кроме того, из кокса получают определенное количество светлых фракций.

Основное отличие коксования от прочих процессов переработки второй стадии – отсутствие катализатора.

В России применяют установки коксования замедленного действия. Температура, при которой происходит этот процесс, достигает 500 0 С, а давление примерно равно атмосферному. Нефтепродукт, поступая по змеевикам в печи, подвергается термической обработке, и из него в соседних секциях выделяется кокс. На таких установках имеется четыре камеры с попеременным режимом работы. Процесс заполнения камеры коксом протекает в течение 24 часов. По истечении этого времени кокс выгружают и запускают следующий цикл работы установки.

Удаление кокса из камеры осуществляют при помощи гидравлического резака. Внешне он выглядит как бур, на конце которого имеются сопла. Через эти сопла струи воды под давлением 150 Атм. разбивают кокс. После этого происходит сортировка отбитых частиц кокса.

В верхней части камеры для коксования имеются каналы для отвода паров на установку по ректификации. Следует отметить, что светлые фракции, получаемые коксованием необходимо повторно перерабатывать, так как повышенное присутствие олефинов значительно снижает их качество.

Объемный выход светлых фракций достигает 35 %, а кокса (при коксовании гудрона) – 25 %.

7. Товарное производство

Вышеперечисленные процессы переработки позволяют получить составные компоненты различных видов топлив, которые обладают отличительными показателями эксплуатации и применения.

Для получения качественного продукта с конкретными показателями качества необходимо получить смесь данных компонентов. Этот процесс осуществляют также на нефтеперерабатывающих заводах.

Производственный комплекс любого направлен на осуществление смешения компонентов на основе конкретных математических моделей. Данный процесс зависит от различных факторов: планируемых остатков переработки нефтепродуктов, необходимых объемов поставок сырья и реализации готового нефтепродукта.

Нередко смешение происходит по привычным рецептурам, которые подвергаются корректировке при изменяющихся технологических процессах.

Процесс смешивания компонентов довольно прост: они подаются в определенную емкость в необходимом количестве. Сюда же могут быть добавлены определенные присадки. После перемешивания, товарный нефтепродукт подвергается контролю качества и перекачивается в резервуары для хранения и дальнейшей реализации.

Основные объемы готового нефтепродукта в нашей стране транспортируются по железным дорогам в . Налив нефтепродукта в цистерны осуществляется с помощью эстакад, расположенных на территории заводов. Определенная часть нефтепродуктов транспортируется также по , которые используют также для реализации топлива за границу. Менее распространенными видами транспорта являются речные и морские пути передвижения.

Естественным жидким топливом является нефть. Это сложная смесь самых разнообразных органических соединений, в основном углеводородов (УВ). Но все эти вещества обладают двумя важными общими свойствами. Во-первых, они богаты энергией, которая высвобождается в результате сжигания. На этом свойстве основано использование нефти в качестве топлива. Во-вторых, эти молекулы можно химически связать друг с другом или трансформировать самым различным образом и получать при этом громадное множество полезных веществ. На этом основано использование нефти в качестве сырья.

Нефть представляет собой жидкость от желто- или светло-бурого до черного цвета, с характерным запахом. Помимо углеводородов в состав нефти входят также в небольшом количестве вещества, содержащие кислород, серу и азот.

Нефть легче воды: плотность различных видов нефти колеблется от 730 до 970 кг/м 3 .

В зависимости от месторождения нефть имеет различный состав, как качественный, так и количественный. Больше всего предельных углеводородов содержится в нефти, добываемой в штате Пенсильвания (США). Бакинская нефть сравнительно бедна предельными углеводородами, но богата так называемыми нафтеновыми углеводородами, имеющими циклическое строение. Значительно богаче предельными углеводородами грозненская, сураханская и ферганская нефть.

Знакомство человека с нефтью началось давно. В древнем Египте пользовались нефтью для освещения. Об этом свидетельствует находки светильников, заполненных асфальтообразным веществом - битумом, образовавшимся из нефти.

Издавна известно, что нафталанская бакинская нефть хорошо излечивает ожоги, а также многие кожные болезни.

Известна была нефть и на Руси. Еще в XV веке печорские поморы смазывали втулки тележных колес нефтью, которую в тех местах называли "земляным дегтем". В русских летописях упоминается о нефти в XVI веке, когда в царствование Бориса Годунова из Ухты в Москву была привезена "горючая вода густа".

Древние греки и римляне называли нефть петролеум, что в точном переводе означает каменное масло (от греческого "петра" - скала, камень и латинского "олеум" - масло). Существует две версии о происхождении слова "нефть". По первой из них, слово происходит от иранского "нефата" - просачиваться, вытекать. Вторая версия утверждает, что слово "нефть" обязано своим появлением арабскому слову "нефтарь", обозначающему обряд очищения верующих пламенем.

О происхождении нефти нет единого мнения. Одна группа ученых, к которой принадлежал Д.И. Менделеев, предполагала, что нефть имеет неорганическое происхождение: она возникла при действии воды на карбиды металлов. Другие ученые, например, Энглер, считали, что нефть имеет органическое происхождение, т.е. образовалась в результатет медленного разложения различных остатков отмерших животных и растений при недостаточном доступе воздуха. В последующие годы в многочисленных образцах нефти были обнаружены различные порфирины - соединения, образующиеся при разложении зеленого вещества растений - хлорофилла и красящего вещества крови - гемоглобина. Это доказывает участие в образовании нефти растений и животных. Проблема происхождения нефти очень сложна и вряд ли в настоящее время может считаться разрешенной.

Первичная переработка нефти

На первый взгляд нефть кажется крайне простым веществом. В самом деле, от 90 до 99 процентов ее составляют углерод и водород. Остальные 1-5 процентов приходятся на долю серы, кислорода и азота. Однако уже выделено и изучено около 200 углеводородов, входящих в состав нефти.

На нефтеперерабатывающих заводах осуществляется первичная и вторичная переработка нефти.

В сырой нефти всегда есть некоторое количество воды и растворенных солей (преимущественно магния и кальция). Обессоленная и обезвоженная нефть подвергается так называемому процессупервичной переработки.

Первичная переработка нефти (ректификация) - это физический процесс разделения смеси углеводородов на фракции - группы веществ с близкими температурами кипения и другими общими свойствами.

Процесс перегонки нефти проводят в ректификационных колоннах, так называемых атмосферно-вакуумных установках. Само название этой установки говорит, что в ней нагрев и перегонка нефти проводится как при атмосферном давлении, так и под вакуумом. Вакуум применяют, чтобы понизить температуру кипения нефти и избежать ее разложения в процессе перегонки.

Нагретая до 400 0 С сырая нефть поступает в ректификационную колонну. Высота колонны более 30 м. Внутри ее на различной высоте расположены наборы керамических пластин, называемых тарелками. По мере того как горячая сырая нефть поступает в колонну, молекулы веществ, имеющих более низкую температуру кипения, первыми поднимаются наверх. При этом они остывают. Самые легкокипящие вещества остаются газообразными и попадают на самый верх установки. Остальные попадают на тарелки, расположенные на различной высоте в зависимости от температуры кипения. Здесь они конденсируются и образуют фракции с различными интервалами температур кипения. Наиболее низкокипящие вещества остаются жидкостями в течение всего процесса и собираются в самом низу колонны.

Фракции, получаемые при перегонке нефти

Фракция Число атомов С в молекуле Интервал температур кипения, 0 С Применение
Нефтяной газ С 1 - С 4 <40 Используется как топливо и сырье при синтезе пластмасс; исходный материал для пиролиза
Петролейные Эфиры С 5 - С 7 40 - 110 Растворители
Бензин С 6 - С 12 40 - 200 Используется как топливо и как растворитель; исходный материал для риформинга
Керосин С 12 - С 16 200 - 300 Используется в качестве топлива в дизельных и реактивных двигателях; исходный материал для крекинга
Газойль (тяжелое дизельное топливо) С 15 - С 18 250 - 350 Используется в качестве топлива в печах и дизельных двигателях (солярка, мазут); исходный материал для крекинга
Фракция смазочных масел С 16 - С 20 300 - 370 Смазочные средства, вазелин
Пары сырой нефти
Нефтяные остатки > С 20 не испаря- ются при t > 370 Состоят из парафина, асфальта, нефтяного кокса (гудрон)

Первой фракцией нефти, которую стали выделять из нее в промышленных условиях, был керосин. Первый нефтеперегонный завод для производства "фотогена" - так тогда называли осветительный керосин - был построен в Моздоке (около Грозного) братьями Дубиниными в 1823 году. Кстати говоря, в америке первый нефтеперегонный завод начал работать десятью годами позже. Бензин в то время был ненужным отбросом.

Каждая фракция подвергается более тщательной разгонкедля получения фракций менее сложного состава. Так, например, бензиновую фракцию разгоняют на несколько видов бензина: авиационный, автомобильный и т.п. (т. кип. от 70 до 120 0 С и лигроин (от 120 до 140 0 С). Бензин прямой гонки имеет низкое октановое число – около 50.

Мазут после дополнительного нагрева до 400 градусов поступает в вакуумную испарительную колонну, где из него выделяют газойль, масляные фракции, используемые для получения смазочных масел, полугудрон и гудрон.

Вторичная переработка нефти

Вторичная переработка нефти – совокупность химических процессов , направленных на изменение структуры углеводородов, увеличение выхода бензиновой фракции и повышению качества бензина.

К процессам вторичной переработки нефти относятся:

крекинг (термический и каталитический);

риформинг;

пиролиз углеводородов.

Благодаря широкому применению различных двигателей внутреннего сгорания из многочисленных фракций нефти очень большое значение имеет фракция бензинов. Однако при разгонке нефти бензиновая фракция в зависимости от вида нефти получается в количестве всего лишь 5-14 % (самое большое 20 %) от общего количества нефти. Кроме того бензин прямой гонки содержит преимущественно углеводороды с прямой цепью, а использование таких бензинов в автомобильных двигателях вызывает детонацию в моторе (стук мотора). Это означает, что сгорание протекает слишком быстро, т.е. вместо спокойного горения произошла детонация.

Представителем непригодного топлива является н-гептан

СН 3 ¾ (СН 2) 5 ¾ СН 3 ,

в то время как 2,2,4 - триметилпентан (обычно неправильно называемый изооктаном),

отношении уникальные свойства. Оба этих соединений были взяты за основу так называемых октановых чисел : гептану было по определению присвоено значение ноль, а "изооктану" - сто. Чем выше октановое число бензина, тем выше его качество. Некоторые соединения имеют октановое число больше 100.

Было установлено, что детонация очень значительна для углеводородов с прямой цепью (с низким октановым числом), в то время как повышение содержания разветвленных, ненасыщенных и ароматических углеводородов снижает детонацию.

Бензин, полученный из нефти простой перегонкой, имеет октановое число от 50 до 55 и непригоден для непосредственного использования в двигателях. Бензин более высокого качества получается при крекинге и риформинге.

Крекинг - расщепление углеводородов тяжелых фракций нефти под действием высоких температур (450 - 500 0 С) и давления. Это слово английского происхождения, означает расщепление.

Крупные молекулы углеводородов с большим числом углеродных атомов расщепляются на более мелкие молекулы предельных и непредельных УВ, тождественные или близкие по содержанию в бензине, и газы крекинга, которые состоят главным образом из газообразных непредельных УВ с небольшим числом углеродных атомов. Газы крекинга подвергают дополнительной обработке, при которой их молекулы соединяются в более крупные (происходит полимеризация), в результате чего также получается бензин.

С 1865 года началось строительство примитивных установок для крекинга, в которых из тяжелых масел получали керосин. Низкокипящие компоненты, в том числе и бензин, в то время использовать не умели, а просто сжигали. В России в 1981 году инженером Шуховым был взят патент на крекинг-процесс.

Позже, уже когда появились автомобили, крекинг-процесс утвердился окончательно. Выяснили, что бензин, полученный этим способом лучше по качеству. Благодаря крекингу выход бензина из сырой нефти возрос от 15-20 % до 40-60 %.

В настоящее время на нефтеперерабатывающих заводах используются два вида крекинг–процессов: термический и каталитический.

Термический крекинг

Поначалу крекинг вели только под действием высокой температуры и назвали термическим.

При нагревании углеводородов до 300-600 0 С под давлением от 5 до 80 ат происходит частичное расщепление больших молекул. Этот процесс происходит примерно так:

С 10 Н 22 ® С 5 Н 12 + С 4 Н 10 + С

декан пентан бутан сажа

Выделяющийся углерод осаждается на стенках крекинг - установок и должен быть немедленно удален. Он уменьшает выход продукции.

Крекинг может протекать и с образованием непредельных соединений

С 10 Н 22 ® С 5 Н 12 + С 5 Н 10

декан пентан пентен

На практике крекинг нефти протекает так, что образуется одновременно и нефтяной кокс и ненасыщенные УВ. Если в камеры ввести водород, то образование углерода и алкенов почти прекратится. В этом случае говорят о деструктивной гидрогенизации.

Термический крекинг впервые в промышленно масштабе был осуществлен в 1913 году в так называемом процессе Бюртона.

Каталитический крекинг

Позднее термический крекинг стали проводить в присутствии катализаторов. Такой вид крекинг-процесса получил название каталитического . Впервые он был предложен Гудри в 1934 году.

В большинстве случаев катализатором служит смесь соединений алюминия, магния и кремния. Каталитический крекинг протекает преимущественно при 500 0 С и давлении 2 ат. Времени, необходимого для осуществления процесса, требуется гораздо меньше, чем при термическом крекинкге.

Кроме этого, сокращается количество алкенов и газообразных продуктов реакции, потому что под влиянием катализатора они либо превращаются в изомеры, либо полимеризуются.

При каталитическом крекинге получается бензин с октановым числом 70-80.

Риформинг

Слово "риформинг" происходит от англ. reform - переделывать, улучшать. Риформинг - переработка бензиновых и лигрои-новых фракций нефти для получения автомобильных бензинов, ароматических углеводородов (бензола и его гомологов) и водородсодержащего газа.

Риформинг заключается в изомеризации , при которой неразветвленные или малоразветвленные алканы при нагревании с подходящим катализатором (например оксидами молибдена, алюминия, галогенидами алюминия, платиной на оксиде алюминия) превращаются в более разветвленные алканы или ароматические углеводороды с большим октановым числом, чем октановое число исходных алканов.

Превращение неразветвленных алканов в разветвленные можно схематически представить следующим образом:

R - СН 2 - СН 2 - СН 2 - СН 3 ¾® R - СН - СН 2 - СН 3 + R - С - СН 3

Риформинг, при котором из алканов или циклоалканов образуются ароматические углеводороды, называют также платформингом (по часто используемому катализатору Pt/SiO 2 и Pt/Al 2 O 3) или гидрориформингом (потому что он проводится в атмосфере водорода). Обычно риформинг проводят при температуре около 500 0 С и давлении 2 МПа.

С помощью риформинга октановое число бензина может быть повышено до 90 и более.

Огромные возможности использования нефти как химического сырья предвидел еще Д.И. Менделеев. Именно это он имел в виду, когда сказал: "Нефть не топливо. Топить можно и ассигнациями".

Химическая переработка углеводородов нефти и газа составляет основу промышленности органического синтеза, которая обеспечивает исходным сырьем и полупродуктами производство таких важных материалов как синтетический каучук, синтетические волокна, пластмассы и многое другое. Часто химическую переработку углеводородов нефти и нефтяных газов называют тяжелым органическим синтезом. Этим подчеркивается особая роль ее во всей промышленности органической химии.


Похожая информация.