Гарантийный... Возврат Порядок

Что такое перенапряжение? Виды перенапряжений и их опасность. Импульсное напряжение Вид устройства защиты импульсного перенапряжения

Классификация и применение УЗИП

Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

Практика применения

Для надежной защиты объекта от воздействия перенапряжений, в первую очередь необходимо создать эффективную и уравнивания потенциалов. При этом нужно перейти на системы заземления TN-S или TN-CS с разделёнными нулевым и защитным проводниками.

Следующим шагом должна стать установка защитных устройств. При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 метров по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств.

Если для подключения применяется воздушная линия, во входном щите на столбе лучше использовать УЗИП на основе разрядников и плавкие вставки. В главном щите здания ставятся варисторные УЗИП класса I или II, а в щитках на этажах ставятся УЗИП III класса. Если необходимо дополнительно защитить оборудование, то в розетки включаются УЗИП в виде вставок и удлинителей.

Выводы

В заключении следует сказать, что все перечисленные меры, конечно, снижают вероятность поражения РЭА и людей повышенным напряжением, но не являются панацеей. Поэтому в случае грозы лучше отключать наиболее ответственные узлы, если это конечно возможно.

3.7. Импульс напряжения и временное перенапряжение

Искажение формы кривой питающего напряжения может происходить за счет появления высокочастотных импульсов при коммутациях в сети, работе разрядников и т.д. Импульс напряжения - резкое изменение напряжения в точке электрической сети, за которым следует восстановление напряжения до первоначального или близкого к нему уровня. Величина искажения напряжения при этом характеризуется показателем импульсного напряжения (рис.3.7).

Рис.3.7 Параметры импульсного напряжения

(3.22)

Где U имп - значение импульсного напряжения, В.

Амплитудой импульса называется максимальное мгновенное значение импульса напряжения. Длительность импульса - это интервал времени между начальным моментом импульса напряжения и моментом восстановления мгновенного значения напряжения до первоначального или близкого к нему уровня.

Показатель - импульсное напряжение стандартом не нормируется.

Временное перенапряжение - повышение напряжения в точке электрической сети выше 1,1 U ном продолжительностью более 10 мс, возникающие в системах электроснабжения при коммутациях или коротких замыканиях (рис. 3.8).

Рис.3.8 Временное перенапряжение

Временное перенапряжение характеризуется коэффициентом временного перенапряжения (K пер.U): это величина, равная отношению максимального значения огибающей амплитудных значений напряжения за время существования временного перенапряжения к амплитуде номинального напряжения сети.

(3.23)

Длительностью временного перенапряжения называется интервал времени между начальным моментом возникновения временного перенапряжения и моментом его исчезновения.

(3.24)

Коэффициент временного перенапряжения стандартом также не нормируется.

Значения коэффициента временного перенапряжения в точках присоединения электрической сети общего назначения в зависимости от длительности временных перенапряжений не превышают значений приведеных в таблице 3.3 .

Таблица 3.3 Зависимость коэффициента временного перенапряжения от длительности перенапряжения

В среднем за год в точке присоединения возможны около 30 временных перенапряжений.

При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухозаземленной нейтралью, возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений междуфазного напряжения, а длительность нескольких часов.

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”


Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:




  • охранная сигнализация

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

Классы УЗИП

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО .

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком - вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом - УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог



  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления.
Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий


При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.




Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Ошибки при подключении

1 Самая распространенная ошибка - это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2 Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В сложных случаях лучше обратиться в специализированную организацию.

Я затрагивал вопрос про основные показатели получаемой электрической энергии из сети, согласно ГОСТ 13109-97. Переходите по ссылке и знакомьтесь подробнее. Здесь лишь повторю, что к ним относятся отклонения напряжения, провалы напряжения и перенапряжения.

Для защиты электрооборудования от первых двух показателей я рекомендовал Вам устанавливать стабилизаторы напряжения. Вот наглядный пример о том, для своего дома.

А вот про защиту электрооборудования и электропроводки от перенапряжений я как то упустил из виду. Поэтому тема данной статьи будет посвящена видам перенапряжений и их опасностям.

Итак, приступим.

Что такое перенапряжение?

Для начала давайте определимся, что же такое перенапряжение.

Перенапряжение — это импульс или волна напряжения, которое накладывается на номинальное напряжение сети.

Вот так примерно это выглядит.

Например, напряжение однофазной сети у нас составляет 220 (В). Напоминаю Вам, что это действующее значение напряжения. Если перевести его в амплитудное, умножив действующее напряжение на √2, то получим 310 (В). Так вот во время импульсных перенапряжений амплитудное значение напряжения может достигать значения до нескольких тысяч вольт. Длительность таких импульсных перенапряжений не велика — всего несколько милисекунд (мсек).

Какую опасность несут в себе перенапряжения? Примеры

Вот еще один пример пагубных последствий импульсных перенапряжений, который вывел из строя электронный «Энергомера» СЕ102.

А ведь мы иногда и не подразумеваем, что тот или иной электрический прибор вышел из строя по причине перенапряжения в сети, а ссылаемся на соответствующее качество производителя.

Причины возникновения и виды импульсных перенапряжений

Всего существует 3 вида импульсных перенапряжений:

  • коммутационное
  • грозовое (его еще называют атмосферным)
  • электростатическое

Рассмотрим каждый вид отдельно.

1. Коммутационное перенапряжение

Коммутационные перенапряжения возникают при резком изменении установившегося режима работы электрической сети. Такое явление называют переходным процессом. Импульсы и волны при данном виде перенапряжений имеют высокую частоту: от десятков до сотен (кГц), а их значение достигает до нескольких тысяч вольт и в большей степени зависит от параметров электрической цепи (индуктивность, емкость), быстродействия коммутационных аппаратов и фазы тока во время коммутации.

Причины возникновения коммутационных перенапряжений:

  • и других аппаратов защиты
  • пуск или отключение от сети мощных
  • включение и отключение от сети силовых трансформаторов
  • включение или отключение от сети конденсаторных батарей

Например, при отключении от электрической сети небольшого трансформатора мощностью всего 1 (кВА) может возникнуть импульсное коммутационное перенапряжение порядка 2000 (В), т.е. вся запасенная энергия в обмотках трансформатора выбрасывается в электрическую сеть, что пагубно может сказаться на работу электрооборудования.

Представьте себе какое перенапряжение возникнет при коммутации силового трансформатора мощностью 400 (кВА)?

2. Атмосферное (грозовое) перенапряжение

Атмосферные (грозовые) перенапряжения относятся к природным явлениям, вызванные грозовыми разрядами.

Грозовые разряды — это мощное импульсное перенапряжение в десятки тысяч вольт и длительностью не более 1 (мс).

По общей статистике 90% молний имеют ток разряда порядка 40-60 (кА). Чуть меньше 1% молний имеют ток разряда 100 (кА) и выше.

Существуют прямые попадания молний в электрическую сеть (воздушную линию) или в молниеприемник, и удаленные попадания молний на расстоянии до 1500 м, при котором возникают импульсные перенапряжения. Смотрите картинки ниже.

На картинках выше волна перенапряжения (импульс) подписана двумя надписями, либо 10/350, либо 8/20. Эти волны (импульсы) имеют определенную форму и длину волны.

Как видно по графику, импульс 10/350 наиболее опасен для защищаемого объекта, чем 8/20, т.к. он в десятки раз дольше воздействует на электрическую сеть.

Еще несколько слов хотел бы сказать про перераспределение энергии грозового разряда. Принято считать, что 50% от первоначального импульса перенапряжения, при условии, что у нас в доме выполнена система молниезащиты и имеется (система , ), отводится в землю, а остальные 50% перераспределяются равномерно между всеми проводниками электрической сети, в том числе трубами и бытовыми коммуникациями.

3. Электростатическое перенапряжение

Еще один вид, который мы рассмотрим — это электростатическое перенапряжение. Чаще всего оно возникает в сухих средах путем скапливания электростатических зарядов, которые в свою очередь создают сильное электростатическое поле. Это очень не предсказуемый вид перенапряжений.

Например, если походить по ковру в , то мы сможем зарядиться до нескольких тысяч вольт. При касании любой проводящей конструкции (батарея, корпус компьютера) произойдет электрический разряд длительностью несколько наносекунд (нсек). Наиболее опасен данный вид перенапряжений для электронных деталей и компонентов электрических приборов и устройств.

Как защитить свой дом от перенапряжений?

Ну вот мы подошли к самому главному вопросу, как же защитить электрические приборы и или от вышеперечисленных импульсных перенапряжений.

Скажу сразу, что полностью избавиться от импульсных перенапряжений не получится. Наша цель — это лишь снизить значения импульсных перенапряжений до значений, не угрожающих нашему оборудованию.

Дело в том, что даже при правильном монтаже системы молниезащиты 50% мощности импульсного разряда уходит в землю, а остальные 50% перераспределяются по сетям и бытовыми коммуникациями дома. Поэтому для осуществления полной защиты от перенапряжений необходимо выполнить:

  • повторное заземление PEN проводника на опоре ввода воздушной линии (ВЛ) в дом
  • повторное заземление крюков и кронштейнов всех опор воздушной линии
  • монтаж системы молниезащиты
  • отдельный контур заземления для молниезащиты, который нужно соединить с основным контуром дома
  • (ОСУП, ДСУП)
  • ступенчатая защита с помощью специальных устройств УЗИП (устройство защиты от импульсных перенапряжений)

Более подробно о каждом способе защиты я расскажу Вам в отдельных статьях. Чтобы не пропустить выход новых статей, пройдите процедуру подписки.

P.S. На этом пожалуй и все. Надеюсь Вы поняли, чем опасны импульсные перенапряжения и что в обязательном порядке необходимо от них защищаться?